Numerical Modelling for Microwave-Optical Transduction and
Photon Pair Generation using Atomic Ensembles

Maria Nicolae

May 17, 2024

Abstract

Quantum networking, the transfer of quantum information across long distances, has great promise
for scaling and interoperating quantum technologies, to allow us to solve problems that would not
be possible or feasible classically. Many of the quantum systems that would form the nodes of this
network have microwave energy scales, but the most feasible long-distance interconnects are fibre
optics transmitting single optical photons. Thus, a means of correlating quantum information between
microwave and optical systems is a near-requirement of quantum networking. This requires a hybrid
microwave-optical quantum system, which can be used for quantum transduction, direct conversion
of microwave and optical photons, and microwave-optical entangled photon pair generation. In this
project, I develop numerical models with which to characterise transduction efficiencies and photon
pair generation rates in hybrid systems that use ensembles of atoms with both microwave and optical
transitions.

Statement of Originality

I certify that this thesis contains work carried out by myself except where otherwise acknowledged.

n

Maria Nicolae
2024-05-17

Acknowledgements

First of all, I would like to acknowledge my supervisor, Dr John Bartholomew. I thank him both
for guiding and directing me throughout this project and for letting me occasionally deviate from
that guidance and direction. I thank him for his patience while I was onboarding and learning the
background for this project. I thank him for his hard working reviewing and giving feedback on drafts
of this report as well as earlier Honours documents such as the talk and research plan. I also thank
him for giving me the opportunities to attend the 2023 EQUS Annual Workshop and 2024 Quantum
Australia conferences.

Next, I would like to thank Professor Andrew Doherty for taking time out of his day to help me
understand quantum input-output theory, as well as for helping me reason about unitary transforma-
tions of Rabi Hamiltonians. I would also like to thank Gargi Tyagi for our discussions on input-output
theory.

I would like to thank Dr Sahand Mahmoodian for our discussions about my biphoton generation
modelling, and helping to clarifying some subtle points about the underlying physics, as well as future
possibilities for the model.

I would like to thank Ben Field and John for giving me spin Hamiltonian code that helped me
understand the system so that I could write my own minimal implementation of the spin Hamiltonian
of ytterbium.

Finally, I would like to thank Gargi and Alice Jeffery for reading drafts of this report and giving
me feedback, and Alice, Tim Newman, Ben, Gargi, John, and Elizabeth Marcellina for giving me
feedback on a practice talk.

Statement of Contribution of Student

I programmed my own implementations of the three-level transduction models in References [1] and
[2], and used these to replicate some of the plots in those references. After noticing discrepancies
between and inconsistencies within those papers regarding phase conventions, I ran one of my model
implementations to evaluate input and output phases, finding that only one convention produced
physically sensible results.

I developed and implemented in code a model for four-level transduction, building on top of the
concepts in the existing three-level transduction models. Iimplemented numerical methods to mitigate
grid aliasing that were based on and built on top of methods in Reference [2]. T then benchmarked
this model against results from experiments described in Reference [3], finding the model parameters
corresponding to those experiments, using a mixture of theory and trial-and-error manual adjustments.
My supervisor also helped refine those parameters.

I developed and implemented both steady-state and dynamical models for biphoton generation in
three-level atomic systems, adapting the three-level transduction model in Reference [2] by changing
indices of input and output atomic transitions, and modifying the atomic dynamics part of the model
to accommodate vacuum interactions that start the generation processes into empty cavities.

Contents

1.1 Quantum Networking|
[1.2 Correlating Microwave and Optical Photons|
1.3 Wave Mixing Processes|
1.4 Hybrid Microwave-Optical Quantum Systems|
[1.5 Hybrid Atomic Systems| L
(Lol Rare Barthsl. o o
[1.6 Background Quantum Theory|. oo oo
[1.6.1 Second Quantisation|
[1.6.2 Light-Matter Interactions|
[1.6.3 The Heisenberg Picture|
[1.6.4 Density Matrices and the Master Equation|
Il,‘ g)l]”illf:g)l l lls::i.“il
Prior Work on Transduction Modelling|
2.1 Quantum Model| e
[2.2 Adiabatic Elimination of the Atomic Dynamics|
2.3 Semiclassical Cavity and Atomic Master Equation Steady States|
[2.3.1 Steady States|
[2.3.2 Further Development by Barnett and Longdell (2020)|
2.4 Comparisons of Models|
[2.5 Transduction Signal Phase Relations|,
Transduction in a Four-Level System in Yb:Y VO,
[3.1 Target Platform and Benchmark Experimental Data]
B2~ Driven Atom Hamiltonianl o o0 v
3.3 Atomic Output|
[3.4 Ensemble Output|.
8.5 Numerical Methods|. o .
[3.5.1 Grid Aliasing]o
[3.5.2 Feature Finding|
[3.5.3 Neighbourhood Integration|
[3.6 Experimental Parameters for Model| L.
[3.6.1 Imhomogeneous Broadening|
[3.6.2 Spin Hamiltonian|.
[3.6.3 Transition Frequencies| L o
[3.6.4 Dephasing Rates| oo
[3.6.5 Dipole Moments|
[3.6.6 Optical Pump Calibration|
B7Z Resulfal. o o oo
[3.7.1 Accounting for Constraint Breakingl

O © 000~ U AR

— =
—_

12
12
13
14
14
15
16
16

4 Biphoton Generation in 3-Level Systems| 31

4.1 Dynamical Model|l 31
[4.1.1 Vacuum Rabi Frequency|. o 32

4.2 Steady States] 33
4.3 Super-Atom Dynamics| 33
4.3.1 Numerical Methodsl o 34

HA Resultd. « . . oo o o e e 34
[4.4.1 Super-Atom Simulations|. oL 34

[4.4.2 Steady States| 37

4.5 Implicit Euler Method| 37
6_Conclusionl 38
|IA Replicating and Reverse-Engineering Rabi Frequencies for Barnett and Longdell |
[2020 42
IB Waveguide Transducer Efficiency F'it| 44
|IC Code Listings| 46
|C.1 Three-Level Transduction Replication| 46
[C.1.1 Single Cavityl e 46

[C.1.2 Double Cavity] e 50

[C.2 Four-Level Transduction] e 57
|C.3 Biphoton Generation|. e 72
[C.3.1 Steady State] 73

[C.3.2° Super-Atom Dynamics|. oo o 83

Chapter 1

Introduction

1.1 Quantum Networking

There are a diverse range of quantum technologies presently being researched and developed. These
include quantum computing|4], quantum simulation|5], and quantum sensing and metrology[6]. Quan-
tum computing is the algorithmic processing and transformation of data encoded in the joint state
space (the Hilbert space) of multiple two-level systems (qubits), which can offer an exponential speed
advantage over classical computers on certain algorithms. Quantum simulation uses an engineered,
controllable quantum system, known as a quantum simulator, to implement a Hamiltonian analogous
to that of some natural or less controlled quantum system, in order to study its behaviour. Quantum
sensing and metrology uses the great sensitivity of quantum systems to their environments to make
measurements more precise than classical equipment can.

These systems have distinct applications from each other, but are not inherently interoperable.
Additionally, all of these systems have proven challenging to scale up. Quantum networking would
alleviate both of these issues by allowing these systems to communicate quantum states between each
other, rather than mere measurement outcomes as in classical networking. Quantum networking would
greatly expand the joint Hilbert spaces of quantum computers and simulators, allowing them to solve
larger problems, and allow them to interoperate with quantum sensors. It would also enable the
use of quantum cryptography|7, |8] in large, complex networks, which could enable eavesdropping to
be detected, through a process analogous to the observer effect. Finally, quantum networking would
enable fundamental experiments of quantum physics, such as tests of Bell’s inequality, at greater scales
than previously possible[9].

1.2 Correlating Microwave and Optical Photons

Many quantum technology platforms, such as superconducting circuits and trapped ions, have energy
levels separated by microwave transition frequencies, meaning that they absorb and emit microwave
photons. Directly transmitting single microwave photons between quantum devices, however, is im-
practical. This is because bulky and expensive cooling infrastructure is needed across the entire length
of the link, to mitigate thermal microwave noise and loss.

On the other hand, optical photons can much more easily be transmitted across multi-kilometre
distances using optical fibres (and further if quantum repeaters[10| are used). Thermal noise is neg-
ligible for optical frequencies, even at room temperature, so no cooling is necessary. In order to use
optical photons to network microwave-energy quantum systems, we would need to be able to entangle
the quantum information in microwave and optical photons. This would require the use of hybrid
systems that contain both optical and microwave degrees of freedom. One way to use such a hybrid
system for quantum networking is transduction, in which a transducer directly converts microwave
and optical photons by absorbing one type and emitting the other type, and vice versa. Another ap-
proach is entangled microwave-optical photon pair generation (henceforth called biphoton generation
for short).

Quantum networking using these processes is illustrated in Figure To entangle two distant

W

o A
Transducer » Transducer
Combiner
. [! .
Machine | g Machine
| |
| |
M I G,] 1%
| A)
| LN
Pair | 0 0 | Pair
Generator Generator

Figure 1.1: Quantum networking of two distant machines using transduction (top) and biphoton
generation (bottom). Measurements of the combined optical signals entangle the two machines.

quantum machines, one approach would be for a microwave photon to be emitted from one machine,
transduced to an optical photon, and then transduced back to a microwave photon at the other end, to
interact with the other machine. Another approach, using biphoton generation, would be to generate
entangled pairs on either end, interact the microwave photons with the machines, and interfere and
measure the optical photons at some common destination.

1.3 Wave Mixing Processes

In order for microwave and optical photons to interact through some mediating system, that system
must have some nonlinearity through which wave-mizing processes, in which frequencies mix to pro-
duce new frequencies, can occur. The simplest of these processes are second-order three-wave mixing
processes, in which three frequencies are involved. These processes include sum frequency generation
(SFG), in which two input frequencies w; and wy mix to produce a third output frequency ws = w; +wo,
difference frequency generation (DFG), in which two input frequencies mix to produce an output fre-
quency ws = |wy — wal|, and spontaneous parametric downconversion (SPDC), in which a single input
frequency w; produces two output frequencies wo and ws for which we 4+ w3 = wi.

Transduction can be performed through the mixing of microwave frequencies w,, and optical fre-
quencies w, with an optical pump wy,; SFG wy, + w, = w, for microwave to optical transduction and
DFG |wp — wo| = w, for optical to microwave transduction. An w, and w, photon pair can be gen-
erated through SPDC w, = w, + wy,. (Note that w, < w, for transduction but w, > w, for biphoton
generation.)

1.4 Hybrid Microwave-Optical Quantum Systems

Many different hybrid systems and processes have been proposed and experimentally studied for use
in transduction and biphoton generation. One example of such systems are dielectric media with
secord-order nonlinear polarisabilities [11} 12, [13] (x(?) # 0). In these media, incident electromagnetic
waves create time-varying polarisation in the material at new frequencies that are then emitted,
giving rise to three-wave mixing. Another example is optomechanical systems[14, [15], in which a
mechanical resonator simultaneously constitutes a mirror in an optical resonant cavity and a capacitor
in a microwave resonator. This results in coupling between the optical, mechanical, and microwave
modes. Yet another platform is atoms with both microwave and optical transitions between their
energy levels[16, 17], in which both types of photons can interact with atomic transitions. Reviews
of the various systems can be found at References [18| 19]. My project focuses on atomic systems in
particular.

An~
\/\J Iy
L

o

1

Optical }
Cavity N
+ \ Optical
X(2) ?é 0 'l |‘
Microwave ' b 12)
' s
1 _-~" Microwave

Resonator
¥k -

1)

Figure 1.2: Hybrid microwave-optical platforms illustrated, including x®-nonlinear dielectric media

(left), optomechanical systems (middle), and atomic energy levels (right).

1.5 Hybrid Atomic Systems

—13) LT 3) —13)
e /
pump 0
0 0 pump
M ’2> pump N ‘2>
s LA RN 1)

Figure 1.3: Transduction in a A-system (left) and V-system (middle), and biphoton generation in a

A-system (right).

Atoms can be used for transduction by working in a three-level system consisting of two levels separated
by a microwave transition and a third level separated from the other two by optical transitions. This
can either be a A-system, in which the |1) and |2) levels are microwave-separated, or a V-system,
in which |2) and |3) are microwave—separatedﬂ To perform transduction in a A-system, |2) < |3) is
pumped so that absorption of a microwave photon by the |1) — |2) transition results in coherence
between the |1) and |3) levels and ultimately the emission of an optical photon from the [3) — |1)
transition, and vice-versa. In a V-system, |1) — |2) is pumped, microwave signals interact with the
|2) <> |3) transition, and optical signals interact with |1) <+ |3). Biphoton generation can be performed

by pumping |1) — |3) to obtain continuous output of [3) — |2) and |2) — |1) photon pairs. These

processes are illustrated in Figure [I.3]

Atoms can be used in quantum technology as electromagnetically trapped ions or neutral atoms,
or as constituents of crystals, with the latter being the focus of my project. Atoms in crystals are
more miniaturisable and therefore scalable than trapped atoms because they do not need trapping
infrastructure; confinement is provided by the crystal. Scaling is desirable because the more atoms are
used, the stronger their collective interactions with the microwave and optical signals are. However,
atomic ensembles in crystals are subject to inhomogeneous broadening of the collective spectral line

shapes, compared to individual atoms.
Let the absorption spectrum of a single atom around its transition frequency wy (the homogeneous
lineshape) be ag(w — wp). The absorption spectrum of N atoms of the same species, if all atoms had

the same transition frequency, would simply be
(1.1)

ap(w) = Nag(w — wp).

! A-systems and V-systems are named as such because the two optical transitions form diagrams resembling those

glyphs.

Absorption

Frequency

Figure 1.4: Inhomogeneous broadening of an atomic ensemble’s absorption spectrum. The individual
atoms have absorption spectra (grey filled curves) that are slightly shifted from each other, resulting
in an overall ensemble absoption spectrum (dashed line) that is broader than the individual atom
spectrum.

However, in a crystal, every atom has its own slightly different transition frequency wy. This is because
each atom has a slightly different local electromagnetic field due to strain and defects in the crystal,
which shift the atomic energy levels via effects such as the Stark and Zeeman effects, by a different
amount for each atom. Given that the atomic transition frequencies are distributed with probability
density function (PDF) p(wo), the absorption spectrum of an N-atom ensemble (the inhomogeneous
lineshape) is

ap(w) = N/Ooo as(w — wo)p(wo) dwy = Nag * p. (1.2)

This is at least as wide as the homogeneous line width, and is usually much wider.

1.5.1 Rare Earths

Of all atomic species one could use for hybrid systems, rare earths are a leading candidate. Their
states have long coherence times, such as nuclear spin coherence times longer than 1s in Er3*+[20]
and up to 6 hours in Eu®[21], and electronic coherence times of 4ms in Er3*[22]. Rare earths also
have narrow inhomogeneous linewidths|23], MHz for microwave transitions and hundreds of MHz
for optical transitions. Both of these properties are the result of the full 5s and 5p electron shells
of rare earths having larger radii than their 4f valence shells, which shields the latter from the
external environment[24]. Erbium in particular has an optical transition frequency in the infrared
telecommunications band which is attenuated least by optical fibres, making it well-suited for long-
distance communication and networking applications.

1.6 Background Quantum Theory

This section explains the quantum-mechanical formalisms that are used throughout the remainder of
the thesis. This begins with second quantisation, the quantum description of light and systems that
interact with light (quantum emitters), and then describes those interactions as exchanges of energy
quanta, and a semiclassical approximation thereof. Then, the theory of inputs and outputs of quantum
systems is presented. Finally, a formalism for quantum decoherence is presented; due to this being
a stochastic phenomenon, this formalism is expressed in terms of probabilistic mixtures of quantum
states.

1.6.1 Second Quantisation

In the formalism of second quantisation, quantum systems are analysed as being composed of compo-
nents (modes) which are occupied by energy quanta. These modes have Hamiltonians of the form

Feoin (1.3)

where

A= nn)(n| (1.4)

is the observable for the number of energy quanta in the mode, and fwg is the energy quantum.

For a bosonic mode, the sum in Equation[I.4)is over n = 0,1,2,..., i.e. an arbitrarily large number
of quanta can occupy the mode. An electromagnetic cavity mode is a bosonic mode, with the energy
quanta being photons. For a fermionic mode, only one quantum can occupy it, and n = 0,1 only.
The fermionic |0) and |1) states are sometimes alternatively denoted |g) (ground) and |e) (excited)
respectively. A two-level quantum emitter is a fermionic mode, and the level pairs of multi-level
systems like atoms can be modelled as fermionic modes.

Ladder Operators

The number operator
n=éle (1.5)

is composed of a lowering operator ¢ and a raising operatmﬂ ¢!, These ladder operators act on number
states by lowering or raising them respectively to adjacent number states. Specifically, the bosonic
ladder operators act on number states by

aln) =vnln—1), a'ln)=vn+1jn+1), (1.6)
and the fermionic ladder operators are
6 =10)(1], &' =[1)(0; (1.7)
¢ in Equation is any one of @ or &. These operators have commutation relationg’|
[a,a") =1, [5,67]=1-26"6. (1.8)

As the notation suggests, ladder operators are Hermitian conjugates of each other, and the lowering
operator, by convention, is the one represented without a dagger.

1.6.2 Light-Matter Interactions
Quantum Model

In the language of second quantisation, light-matter interactions are described in terms of an electro-
magnetic cavity with lowering operator @ and a two-level quantum emitter with lowering operator &.
Here I consider light-matter interactions through the dipole interaction, which, for the example of an
electric dipole, is represented by a Hamiltonian

-FI = ﬁlight + -Hemitter - 61 -E. (19)

d is the dipole moment operator of the emitter, and can therefore be expressed in terms of &, and E is
the electric field operator, which can be expressed in terms of a. Making appropriate approximationsﬂ

2 Alternatively, annihilation and creation operator respectively

3Here, unlike in Equation h =1 is used and £ is dropped accordingly. The same will be done in the remainder
of this thesis.

4The rotating wave approzimation

and writing the result out in terms of mode operators yields the Jaynes-Cummings Hamiltonian|25,
20)
Hyc = wrala + we6'6 + glact + ale). (1.10)

Here, w, is the resonant frequency of the cavity, w, is the transition frequency of the emitter, and g
is a constant representing the strength of the interaction. The terms aé' and afé that are scaled by
g represent the interaction itself as the transfer of energy quanta between the cavity and the emitter.
Because this interaction is through the dipole mechanism, the interaction strength is proportional to

g o< (gl d) le) (1.11)

the component of the dipole moment matrix element parallel to the light polarisation.

Semiclassical Approximation and Rabi Frequencies

A unitary transformation of Equation [[.10] eliminates the cavity energy term to obtain

H = w,6'6 + gae st + gaterts. (1.12)

To form a semiclassical approximation, the cavity operator a is replaced with a complex number «
that represents the amplitude and phase of a ‘classical-like’ cavity stat scaled so that |o? = (n)
resulting in the semiclassical mean-field model in [27], a Hamiltonian which, in the (|g),|e)) basis of
the emitter, is

* L lwpt

- 0 ga*e

H = .
— 1wyt Wa

= | ae (1.13)

This represents the dipole interaction between a quantum emitter and a classical oscillating electro-
magnetic field in terms of the Rabi frequency) = ga. More specifically, for the example of an electric
dipole,

(1.14)

where & is the complex amplitude of the electric field. This model therefore also applies to emitters
driven by waveguides or free-space light beams, for some €2 that has no interpretation as a ga. A
unitary transformation of Equation [I.13] gives a time-independent Hamiltonian

~Jo o
H_klm—w} (1.15)

Furthermore, Equation [1.13] can be extended quite simply to driven multi-level systems: for energy
levels indexed by k£ and drives indexed by ¢,

H = Zwmkk + Z (Qgeiwt&im + Q’Ee*iwet&jﬂl) (1.16)
k ¢
where 6;; = |i) (j| are unit matrices and igj, are the transitions driven by drive /.

1.6.3 The Heisenberg Picture

The Heisenberg picture of quantum mechanics is a formulation of quantum mechanics in which op-
erators evolve in time, but state vectors (kets) are static, representing initial conditions. This is
in opposition to the Schréodinger picture. Operators in the Heisenberg picture obey the Heisenberg
equation|2§]

% = —i[A, H]. (1.17)
When forming semiclassical approximations that replace light operators with amplitudes, such as in
Subsection the Heisenberg equation of a light operator becomes the differential equation of the
amplitude.

®Known as a coherent state; see Reference [26).

Langevin Equations and Input-Output Theory

If we have some system, with Hamiltonian flsys that is coupled through an operator ¢ to a waveguide or
transmission line, input-output theory|29|] provides a quantum model of such a system, which includes
the dynamics of some (not necessarily bosonic) system operator a expressed in terms of modified
Heisenberg equation, known as a Langevin equation,

da a B . v ; Y. > e

% = =il Hyo] + [a,¢'] (= 5+ vAbu () + (3¢ = vA0,0)) [a.) (1.18)
Here, Ein(t) is a bosonic-like operator representing the input from the waveguide into the system at
time ¢, and + is the rate of energy loss from ¢ into the waveguide. A similar output operator is

i)out (t) = _l;in(t) + \ﬁé (119)

The operators Bin(t) and Bout(t) at one time and at another time correspond to separate modes,
and should not be interpreted as any sort of time evolution. Loosely speaking, we can think of these
operators as representing d-function pulses that arrive at the system at time ¢, which can be integrated
over to form arbitrary signals.

1.6.4 Density Matrices and the Master Equation

A density matriz|30] for a system is an operator which describes the probability distribution of states
in that system, distinguishing ‘classical’ probability from quantum superpositions. For states |¢y)
with probabilities pg, the density matrix is

p=> prlvw) (el (1.20)
k
In the Schrédinger picture, density matrices evolve according to the Master equatiowﬁ
dp -
— = —i[H, p]. 1.21
L = il) (121)

The expectation value of an operator O can be calculated from a density matrix p as

<O>::tdﬁOL (1.22)

which, for a density matrix of the form in Equation is the weighted sum of the expectation value
for all |¢y) states

<O> = ok (k] O[¢hn) - (1.23)
K

Density Matrices and Quantum Decoherence

Consider the density matrix of a two-level system. A pure ground state |0) has density matrix
. |10
whereas an even probabilistic mixture of |0) and |1) has density matrix
.1 10
p=50) 01 +[1)A) =12 1| (1.25)
2 0 3

This demonstrates that the diagonal elements of a density matrix represent probabilities of states.
Indeed, tr p = 1. The even superposition |¢)) = % (|0) 4+ |1)) has density matrix

D[=00 | =

p=wwl=7 1. (1.26)

S Alternatively, the Lindblad equation

10

which demonstrates that the off-diagonal elements represent coherences between states. That is to
say, they distinguish between superpositions and classical probabilities.

Density matrices are a useful formalism for expressing quantum decoherence. The two types
of decoherence in quantum systems are depolarisation and dephasing. Depolarisation is unwanted
transitions between states, which includes transitions to lower-energy states (relazation) as well as
unwanted excitations to higher-energy states. In a density matrix, this is represented by changes in
the diagonal elements. Dephasing is drift in relative phase between states, caused by fluctuations in
the energy levels. This is represented by decreases in the magnitudes of the off-diagonal elements.
The dynamics of decoherence can be represented by additional terms in the Master equation. For
decoherence resulting from the coupling of operators Ay, to the environment, with rates v, the Master
equation becomes R

% — i[A, 5 + zk: % <2Ak;§AL — Al App— pA;Ak) . (1.27)
In both the original and prior modelling work presented in this thesis, density matrices are used to
represent the states of atoms, but not cavities. This is because cavities do not dephase, only depolarise
by gaining and losing photons, and so the input-output formalism of Subsection is better suited.

1.7 Outline of Thesis

This thesis is structured as follows. Chapter [2| mostly presents prior work on both numerical and
analytical modelling for atomic ensemble based microwave-optical transduction, that the original work
in this thesis builds from. At the end of that chapter, in Section it describes original work on
analysing phase conventions and relations in that model. Chapter [3] describes original numerical
modelling for transduction in four-level atomic systems. This model computes transduction signal
strengths, and thereby conversion efficiencies. The chapter also compares model and experimental
results. Chapter [4] describes numerical modelling for the pair generation rate resulting from biphoton
generation in three-level atomic systems. Finally, Chapter 5| concludes the thesis.

11

Chapter 2

Prior Work on Transduction Modelling

Figure 2.1: An illustration of a crystal in a cavity, with signals entering and exiting the cavity.

In this chapter, I review some existing modelling work|1, [2, |31] for microwave-optical quantum trans-
duction using atomic ensembles in microwave and optical cavities. This prior work focuses on atoms
in cavities rather than in free space, because cavity-based systems promise to be more efficient because
of stronger light-matter interactions in cavities due to concentrated electromagnetic field. To begin,
I present a fully quantum model for three-level atoms in cavities in Section and then in later
sections, I review the semiclassical models of References [1| |2, 31], and discuss the approximations
made in those models. In Section I investigate relations between input and output phases in these
models, and find that there is a physically sensible phase relation only if a particular modification is
made to the model. The phases of optical photons can be used to encode quantum information, and
so accurate predictions of phase are important to such applications. Notation used here may differ
from that of the original sources.

2.1 Quantum Model

A fully quantum model for such a system is the Jaynes-Cummings-like Hamiltonian|2]

N N

I:I = ﬁcavities + Z ﬁatom,k + Z I:Iint,k (21)
k=1 k=1

where NN is the total number of active atoms and k is an index over the atoms. The Hamiltonian of
the cavities is
Hcavities = 5code + 5c,ubTb (22)

where @ and b are the lowering operators of the optical and microwave cavity modes respectively, and
0co = Weo — Wo and 6y = Wey — wy, are the detunings of the optical and microwave signals respectively
from the resonant frequencies of the cavities. The other two components of Equation depend on
whether the three-level system being used is a A-system or a V-system. The atom Hamiltonian, with
both cases explicitly written out, is

Hatom,k = (23)

A Ou k022 k + 0p k033 A-system
0o k022, % + 0p 033 V-system

12

Gijk = |ik) (jr| are atomic unit matrices, d, = w13 —w, is the detuning of the optical signal from the
1) <> |3) transition frequency, and d,,, and 6, are the detunings of the microwave and pump signals
respectively from their corresponding atomic transition frequencies. These transition frequencies are
different for each atom due to inhomogeneous broadening. By conservation of energy, d, 1 +0pr = 0ok,
and so, even though we only directly control the frequency of the two inputs, we always know the
frequency of the output. The interaction Hamiltonian is

Hing ke = Qp k0iyj, k + 9o,k0031 k + Gukb0i,j, k + h.c. (2.4)

where €, . is the pump Rabi frequency on atom k, g, and g, are the coupling strengths of atom &
to the optical and microwave cavities respectively, and i, and j, (i, and j,) are the lower and upper
atomic levels respectively of the transition corresponding to the pump (microwave) signal.

The cavity Langevin equations for this system, which include damping and signal input-output,
are

N
da oo . = i + Yoc - .
— = —00c00 — 1 Z 9o 1013k — Joi T Yoe 4 VYoclin(t) (2.5)
dt = 2
db al Yui + Y
. 2 . o i cy 7
a = _Z(Scub —1 ;g;kaiujwk — %b + w/’Yucbin(t) (26)

where 7o; and Yoe (74 and 7,) are the energy loss rates of the optical (microwave) cavity through
intrinsic damping and coupling to the input-output channel respectively. The output operators are,
in analogy with Equation [1.19

Gout(t) = —Gin(t) + Voc(t) (2.7)
bout () = —bin(t) + \/Apuch (D). (2.8)

2.2 Adiabatic Elimination of the Atomic Dynamics

The fully quantum model is intractable to solve exactly. One approach to simplifying the model
into something tractable is that of Williamson et. al. (2014) [31]. By assuming that the atom-signal
detunings are large (|0ox| > |9okls [0,k] > |gukl, and |ox0u| > |Qp1|*), We can approximate
the indirect interaction of the microwave and optical cavities as a direct interaction, adiabatically
eliminating|32] the atomic dynamics. This gives an effective interaction Hamiltonian for the system

Heg = Safb + S*abf (2.9)
where the effective interaction strength is
N
k9, kgo k
-5 : 2.10
> it (2.10)

Note that this is the same Hamiltonian as for two cavities that share a mirror, with the transduction
process being analogous to photons passing through the shared mirror. The cavity Langevin equations
are then

da P Yoc ~

pri —1iSb — 5 at VYoclin(t) (2.11)
db en ’yuc
i —iS b+ /cbin (t); (2.12)

this model further assumes that all loss in the cavities is through the input-output channels, i.e.
Yoi = Yui = 0. In the steady state of the cavities, the conversion efficiency (in both directions) can be
found analytically to be

415\/ YocYuc

(2.13)
4 ’S| + Yoc Ve

n=

13

2.3 Semiclassical Cavity and Atomic Master Equation Steady States

A less simplistic model, one which must be solved numerically rather than analytically, is that of
Fernandez-Gonzalvo et. al. (2019) |1]. That paper only explicitly describes A-systems, but the gener-
alisation to V-systems is straightforward. In this model, the atom-cavity interaction is replaced with
semiclassical (Rabi) drives in the atom Hamiltonian

0 QL. Q4

ﬁatom,k:: Q,uqk 5M,k Q;,k (214)
Qo,k Qp,k 6p,k

where (), ;. and), ;, are the Rabi frequencies of the driving that results from coupling to the microwave
and optical cavities respectively. With o as the semiclassical amplitude of the optical cavity, €2, =
Jo k.. However, we do not treat the microwave cavity similarly, and instead assume that its amplitude
is large enough that atomic absorption and emission is negligible, and so disregard the dynamical
details of €, 1, setting it to be some constant value.

To handle the atomic dynamics, we use the Master equation

~

dt - ﬁkﬂk - [Hatom ks Pk-] + ﬁdec kPk (215)

with decoherence operator

LaeekPr = L12,kPk + L13 1Pk + Lo3 1Pk + Lod kPr + L3d.kPk

7"”",k+1 . A P 5 0
M (QUij,kpkUji,k — PkOjjk — O'jj,kﬂk)

5 Vij ij k i=1j=2
Lijbr = + % (26ji kPrCijk — Pr0iik — OiikPk) (2.16)
% (2&ij,kﬁk&ji,k — ﬁk&jj,k — &jj,kﬁk) otherwise

Lo b — Yid 55 s 4 Aa A A
idkPk = 5 (2645 kP 0ii ke — Pr0iik — OiikPk) -

Y24 and 734 are the dephasing rates of levels |2) and |3) respectively with level |1), and 712k, 713, and
23 are the relaxation rates via the indicated transitions. njg is the mean thermal excitation count
at wiak, as per the Bose-Einstein distribution, which is approximately zero for all other transition

frequencies. For this transition,
1 1
12k = ——
2, T2 12 + 1
where 712 is the relaxation lifetime, whereas the other transitions follow the simpler v;; = 1/7;;.
« evolves in time according to a semiclassical approximation of Equation in which a is, of

course, replaced with «, and the &;; operators in the atomic interaction terms are replaced with p;;

(2.17)

to give
N

Yot + Yoe
—i0co =1 Y G kP13k — 5 0+ \octin (2.18)
k=1

da
dt

2.3.1 Steady States

Despite this model being much smaller than the fully quantum model, operators having been replaced
with complex numbers, it is still intractable to solve the time evolution of, because it requires N
density matrices to be stored in memory. Finding steady states, however, is tractable with a few further
simplifications. Let py gg(cv) be the steady state of the density matrix of atom k given an optical cavity
amplitude «a, which is found by solving the linear system in Equation We can drop the k£ index
by including as function arguments all atom variables to obtain pgs(€2p k, Go.k> @ ks do ks Ok, Wi k)-
If we assume that all atoms have the same coupling strengths and Rabi frequencies, pgg varies only
with « and the inhomogeneous shifts of each atom. This allows us to replace the sum in Equation
with an integral over the inhomogeneous distribution, of the form in Equation

da

dt

O'L + ocC
—i0cocx — iN g} // p13,55 (v, 012, 023)p(S12, d23) dd12ddo3 — i 5 Joi T o, 4 VYocltin. (2.19)

14

Here, 0;; = w;j — ng is the inhomogeneous shift of an atomic transition frequency ng from some
‘nominal’ transition frequency w;;, and p(d12,923) is the PDF of those shifts. A value of o for which
Equation is zero, i.e. a steady state, can be found using numerical root-finding, in which each iter-
ative step involves evaluating the integral over the inhomogeneous distribution using some numerical
quadrature scheme.

2.3.2 Further Development by Barnett and Longdell (2020)

Barnett and Longdell (2020) [2] further developed this model by including the dynamics of both
cavities, with a semiclassical microwave cavity amplitude 8 from which the microwave Rabi frequency
Q, = g,f derives. Additionally, the assumption that all atoms have equal interaction strengths was
replaced with the assumption that N, < N atoms have equal g, and N, atoms have equal g,,, with
the remaining atoms not interacting with those cavities at all, due to being outside the mode volume.
Put together, this replaces Equation with the system

d —"_ oc
dj: = —i0eo0r — iNog, // p13,55(c, B, 912, 023)p(d12, d23) dd12ddaz — 5 Joi T oc o 4 VYoctin (2.20)
d T + C
% = it — N, [[prass(a 5,012,)02,) dbradizg — HE 5 g, (2220

Numerical Methods

When performing the integral over the inhomogeneous distribution, pgg will vary rapidly around
values for which ﬁamm(&g, 093) has degenerate eigenvalues. Accordingly, to achieve good numerical
accuracy in the integral, samples should be concentrated around those parts of the domain. Barnett
and Longdell address this by splitting the two-variable integral into an inner and outer integral, and,
for each inner integral, performing root finding on the discriminant of the characteristic polynomial of
H, atom, Which is zero where the Hamiltonian has degenerate eigenvalues, and partitioning the domain
interval of the inner integral about that root point. The integral on each of those subintervals is
evaluated using Gauss-Lobatto quadrature|33|, which includes the endpoints of the interval in the
nodes of integration. This ensures that the points of degenerate eigenvalues are not skipped in the
numerical integral.

Real Density Matrix and Master Equation

An atomic density matrix p has nine complex elements, but because it is Hermitian, only nine real
degrees of freedom. These degrees of freedom can be arranged in a real non-symmetric matrix

p11 Repia Repis
Preal = |Impra p22 Repas| . (2.22)
Impis Impas ps33

Barnett (2019) [34] showed that this can be expressed as a linear transformation
ﬁreal = Cﬁ? (223)
and so the Master equation can be expressed as

d/A) real

dt = ‘Crealﬁreal (2 24)
Lreal = CLCTL.
Accordingly, steady states of the Master equation can be found as
pss = Cilﬁreal,SS (225)

where preal,ss is the steady state of Equation [2.24]

15

2.4 Comparisons of Models

Barnett (2019) [34] compared the numerical results of the semiclassical cavity amplitude and atomic
master equation model to those of experiments with an Er:YSO (erbium doped in yttrium orthosilicate)
crystal and found good agreement. That work also compared the theoretical and numerical results of
that model to that of the simpler adiabatic model, and found significant disagreement between the
two, at least for some choice of parameters. This demonstrates that the cavity amplitude and atomic
master equation model is much more accurate than the adiabatic model.

2.5 Transduction Signal Phase Relations

In these models, the semiclassical approximation is formed by replacing the atomic unit matrices
05,k With density matrix elements p;; ;. However, the formal expectation values of these atomic unit
matrices, using Equation are in fact (6y;%) = tr(pr0ijk) = pjik, which is the complex conjugate
of pijr. The papers acknowledge this, but use p;; instead. A complex conjugate flips phase and
preserves magnitude, and so the choice of index order would have its effect on the output phases.

Using my own implementation of the model in Reference [2], I compute transduction signals for
both index orders, to find the output phases. For each index order, I use the three different microwave
input powers investigated in the paperﬂ P, = —200dBm, —75dBm, 5dBm. For each, I perform 60
trials of random pairs of phases for €2, and fi,. The optical pump strength was kept constant for
all evaluations, with |Q,| = 35kHz as in Reference [2] (see Appendix [A)). All evaluations use zero
detunings d, = 0, = 0co = Ocu = 0. The results (Figure showed that arg 2 + arg B, — arg aout
was independent of phase for the pj;; index order, but not for the p;;; index order, and that this
was the only ‘conserved’ phase sum. Therefore, the effect of this complex conjugation on phase
is quite nontrivial, and only pj; ; has a physically sensible relationship between input and output
phases, in which inputs and outputs have internally consistent and opposite phases. Accordingly, 1
use 0y, — pjik in all of my original modelling.

arg(Q) + arg(Bin) — arg(aout)

pj,', Pﬂ = — 200 dBm pj,', Pﬂ = — 75 dBm pj,', Pﬂ =5dBm

OO

pij, Pu=—200dBm p;, P,= —75dBm pij, P, =5 dBm

O O

Figure 2.2: Sum of input phases minus output phase, for 6;;, — pjir (top) and ;6 — pijk
(bottom) and for different microwave powers (columns). For pj; 1, this phase sum is consistent for all
input phases, though it does vary between power levels. For p;; 1, on the other hand, it varies, only
slightly for low powers but quite substantially at high power.

IS

1dBm is a ‘unit’ of power which is a decibel scale with 0dBm = 1 mW, so that e.g. 30dBm = 1 W.

16

Chapter 3

Transduction in a Four-Level System in
Yb:YVOy

This chapter describes original work on modelling the output power from transduction in a four-level
atomic system, which can then be used to calculate transduction efficiency. This builds on concepts
used in the three-level transduction models discussed in Chapter[2 Transduction in a four-level system
involves multiple atomic transitions that produce output, which may have different phases from each
other and therefore interfere. This can affect transduction efficiencies by orders of magnitude, but a
three-level model does not account for it. This is applicable to many atomic platforms because the
atomic levels used for transduction are almost always part of electronic multiplets, and so a ‘three-level’
transduction system will usually have a fourth level near the optical-separated level. Additionally, this
chapter focuses specifically on transduction with atoms coupled directly to waveguides, rather than
through cavities as in the prior work, which requires a different formalism to model.

To construct this model, I first constructed a four-level Hamiltonian and resultant Master equation
for driven atoms, then used input-output theory to derive an expression for emission from the atoms,
and finally expressed the overall emitted power from the entire ensemble as an integral over the
inhomogeneous distribution. This thesis also presents numerical methods I developed for implementing
the model. After describing this model, this chapter presents a comparison of the output powers
computed using the model with those measured in experiments is presented, detailing the process of
finding appropriate model parameters.

3.1 Target Platform and Benchmark Experimental Data

In constructing a model of four-level transduction. I aim to simulate the experiments described in
Bartholomew et. al. 2020[3]. This work used an on-chip device (Figure consisting of an optical
waveguide constructed of "'Yb3+:YVOy (yttrium orthovanadate doped with ytterbium) crystal, inside
a microwave transmission line. For transduction experiments, the device is placed inside a dilution
fridge and cooled to ~ 1 K.

17yh3+ | the active species in transduction, has a nuclear spin I = 1/2 and electron spin S = 1/2.
The energy levels of 17'Yb3* form electronic quadruplets that are non-degenerate (Zeeman-split) in
the presence of an external magnetic field. The four levels relevant to the model are the upper two
levels of the 2F; /5 quadruplet (1) and |2)) and the lower two levels of the 2F5 /5 quadruplet (|3) and
|4)), which are separated by microwave transitions within a quadruplet and by near-infrared optical
transitions between the quadruplets.

Transduction experiments in Reference [3] consisted of an optical pump at w, that was swept
between and around the wq3 and wy3 transition frequencies and a continuous microwave drive at w,, that
was swept around the w3y transition frequencies, producing an optical output signal at w, = w), +wy,
through the |4) — |1) and |[4) — |2) relaxations that is measured and recorded. Examples of these
recorded transduction signal strengths are shown in Figure [3.2

This experimental data is used (in Section to benchmark the model, specifically a dataset

17

14),
2 |3>(
F/2 2), = |4)
.=
304 501 GHz Wo
wp Wo
(984.537 nm) Wp
4) =12
0.698 GHz Igig _ Ili
2F g
iy

Figure 3.1: Left The transduction device in Reference || consisting of a suspended optical waveguide
constructed of 1"'Yb3t:YVOy,, terminating at a Bragg reflector so that signals enter and exit at
the same end. Image credit: Reference [3]. Right The four-level system in "'Yb3+:YVO, used,
annotated with transition frequencies at B, = 2.09mT and with signal frequencies w,,, wp, and w, of
the transduction experiments. Shown in grey are the unused levels of the electronic quadruplets.

Transduction Experiment Data

Optical Pump -20 dBm Optical Pump -4 dBm

1750 1750
-70 _ -0 _
1500 € 1500 €
g 75 8§ ~ 75 8
1250 g0 = E 1250) 80 =
C C
@ o o
» 1000 -85 »n » 1000 -85 O
b= el b= el
O () O ()
8 750 -90 S § 70 -90 g
3 —95 2 3 —95 2
500 & 500 &
-100 "~ -100 "~

250 250

3360 3380 3360 3380
wy/2n (MHz) wy/2n (MHz)

Figure 3.2: Experimental transduction signals measured by sweeping w, and w,. Left shows data
captured using a weak optical pump in which the transduction signal consists of simple bright spots
near the atomic transition frequencies (One for w, = w3 and one for w, = wo3). Right shows data
captured with a strong optical pump, which exhibits nontrivial structure with thin curve-like features.
Data credit: Bartholomew et. al. (unpublished).

that overlaps with the data published in Reference , but that also includes some unpublished dataﬂ
This dataset consists of frequency scans for optical pump powers ranging from —40dBm to —4 dBm
inclusive. Published in Reference 3] are experimental data in a weak optical pump regime in which the
transduction signal simply consists of two spots around the two optical transition frequencies, which
can be modelled as two separate three-level V-systems that do not significantly interact with each
other. However, the unpublished data is in a strong optical pump regime in which the transduction
signal contains features that stretch between both optical transitions. Reproducing these features was
a goal of my modelling, and this requires a full four-level model.

1Given to me by my supervisor who is the lead author of Reference H

18

3.2 Driven Atom Hamiltonian

The effect of the optical pump is represented by Rabi frequencies 213 and 23 on those respective
transitions, because both are driven by the one pump. €2, is the Rabi frequency of the microwave
drive on the |3) — |4) transition. Additionally, I include Rabi frequencies Q14 and g4 to represent
re-absorption of the emitted light by the atoms, possibly due to some back-reflection or weak cavity-
like behaviour in the waveguide. Alternatively, these terms could be used in future modelling work
for four-level atoms in cavities. Putting these together using blocks of Equation the driven atom
Hamiltonian in a static frame is

0 0 Qigetrt Qfjetet
/ * iwpt * Wet
ﬁ*t , (w/ W) = 0 ' Wi Q55e™r Q246, ° (3.1)
static\"*12, %13, %14 Ql3efuupt 9236710‘)”1‘/ w/13 Qzezw#t
—iwot —iwot —tw,,t /
9146 Wo 9246 Wo Que Wy Wiy

where wj; = wjj — d;; is, as in Subsection the |i) — |j) transition frequency of the atom, which

is different for each atom because of inhomogeneous broadening. A unitary transformation to a frame
co-rotating with the signals gives a time-independent Hamiltonian

00 9 o
- 0 w Q3 5
VAN 12 2623 24
H (612, s 5u) =10y Qs 5],3 QZ (3.2)
Qs Qos QH (51/,) + (5;
which is expressed in terms of detuning variables
5;, = wis wp = 0p — 613)
5L = w:’34 Wy = 5# — (534
The Master equation for the atoms is then
dﬁ !N A e ! < A ~
E =: £(512, 5p7 (5#)p = —Z[H((slg, 5p7 5#)’ ,0] + ﬁdec(él% (534)p (35)
where the decoherence operator
Laecp = L12p + L13p + L14p + Lozp + Loap + Loap + L3ap + Laap
Vi +1)
(204905 — po; — 6550) L
o ! t=1,j=20ri=3,5=4
P ik . o
ij + 9 Y (20']'1'/)0'1']' — PO — Uz’z’p) (36)
% (26’@'ﬁ6ﬁ - ﬁé’j - 6jij) otherwise
A Yid jon An N A A
Liap = = (261ipGi; — poii — Giip)

2

is analogous to that of Equation [2.16] and depends on the microwave transition shifts via the thermal
excitation counts of the microwave transition frequencies n, and nj,. The steady-state density matrix
pss(012, 5;, 5,&) can then be found by solving the linear system of the Master equation. In practice, I
do this via the real version of the Master equation, as in Equation because an R**4 system of
equations is faster to solve than a C*** system.

3.3 Atomic Output

Adapting from Equation the input-output relation for a transition |i) <> |j) of some atom is, up
to some phase convention,

Gout,ij = —Qinij + /Vij,c0ij (3.7)

19

form a semiclassical approximation, I replace aout,ij — Qout,ij» as Well as @in ;; — in,ij; = 0 because the
expectation value of the input is already captured by the Rabi frequencies on the atom Hamiltonian,
and ;5 — pji ss where I take the steady state, obtaining

where 7;; . < ;5 is the relaxation rate of the atomic transition through coupling to the waveguide. To

Qout,ij (012, 0, 0),) = \/Vij.cPSS,ji- (3.8)
The output power from a given transition, then, is
Patom,ij (012, 0, 6,,) = hw, |tout,ij|” = hwoyije [pss,jil” - (3.9)

Recall that there are two transitions producing output in this system, |1) < |4) and |2) < [4).
The output power from each transition cannot simply be summed to obtain the total atomic output
power, because each transition’s emission may have different phases, and so they may interfere with
each other. Specifically, because this model assumes that the light-matter interactions are through
the dipole mechanism, the output has a phase related to that of the matrix element

dij = (il dy |5) (3.10)

of the component of the dipole moment operator parallel to the emission polarisation. To capture
this, I re-express the atomic relaxation rates in terms of complex numbers C;; for which

Ciil* = ijie (3.11)
arg Cj; = arg d;;. (3.12)
Thus, the total atomic output power is
Patom (812, 0}, 6,,) = hwo [Crapss,ar + Cospssazl® =: hwolatom (3.13)
Catom (012,), 0,,) = |[Crapssa + Coapss | (3.14)

where I',tom is the photon emission rate from the atom.

3.4 Ensemble Output

The total power P(dp,0,) from the ensemble can be found as an integral of the single atom power
Patom (012, (5;,, 5&) over the inhomogeneous distribution

P(6p,0,) = N///P(512, 013, 034) Patom (912, 0p — 013, 9, — 634) db12dd13dd34 (3.15)

= hwoN ///p(512, 913, 034)atom (012, Op — 913, 6, — 934) dO12dd13dI34 (3.16)

where p(d12, 013, 034) is the PDF of the inhomogeneous distribution. I then make the approximation
that the inhomogeneous shifts are much smaller than the transition frequencies |0;;| < wij. Tatom
depends on d12 only via the shifted transition frequency wj,, and in this approximation wj, ~ wia,
and so d12 can be ignored. This is not true of the other shifts d13 and d34 because I'atom depends on
them directly. In this approximation, then,

P(ép’ 5#) = hwoN //p(5137 634)Fatom(5p - 513, 6# - 534) d513d534 (317)
= h(w14 - 517 - 5#)N(p * I‘autom) (318)

where p(013, 034) = [p(d12, 813, d34) dd12 is a marginal PDF, and w, has been re-expressed explicitly in
terms of the detuning variables. Thus, numerically evaluating a grid of P(6y,6,) is a matter of first
evaluating a grid of Tatom (d),, (5;) and then convolving it with a grid of p(d13, d34), which is much cheaper
computationally than evaluating the integral in Equation (or even Equation using numerical
quadrature because convolutions can be evaluated using Fast Fourier Transform. Furthermore, in the
experiments that I am modelling, |,, |0, < wia, and so the expression for w, in Equation
simplifies to

P = hw14N(p * Fatom)- (319)

20

3.5 Numerical Methods

As can be seen in Figure there are thin curve-like features in the transduction signal. When
evaluating a grid of I';tom, these curve features may be subject to grid aliasing, in which the relative
alignment of the features with the grid points result in unphysical structure in the resulting grid of
Iatom values, which is then blown up in P by convolution. In this section, I describe the methods I
use to implement the model in a manner that is robust to grid aliasing while being computationally
cheaper than simply using a finer grid.

3.5.1 Grid Aliasing

A mathematical description of grid aliasing is as follows. Letting A3 and Asy be the grid spacing of
the discretised convolution kernel p, the discretised convolution in Equation [3.19|is

P(6p,0,) = hwraN Y p(iliz, jA31)Tatom(6p — iA13, 6, — jA34) (3.20)
(i,5)€Z?
= //p(513, 934) I A, (013) I A4, (034) Tatom (0p — 013, 0 — 034) do13dd34 (3.21)

convolution kernel

where IIp(x) is a Dirac comb of period T. This means that discretising the convolution in Equation
B:19]is equivalent to discretising the kernel into a weighted Dirac comb. Convolving with this kernel,
unlike the original kernel, does not smooth out curve features, but merely displaces them, which is
precisely the aliasing mentioned earlier. However, if our grid of I'som contained the integral within
the neighbourhood of a grid point instead of just the value at the grid point itself, the discretised
convolution would be

+1/2 pj+1/2
P(dp, (5“) 7 hw14N Z p(iAlg,jA34) / / Fatom(ép — i/Alg, (5# — j,A34) d’lej/ (322)
(i,j)ez? i—1/2 Jj—1/2

= //p([i]Al?n [7]A34) Tatom (0p — iA13, 6, — jAz4) didj (3.23)

convolution kernel

where [z] is the rounding of x to the nearest integer. This convolution kernel is a step function, which
is both closer to the original kernel than a weighted Dirac comb, and smooths out curve features
because it is finite everywhere. Evaluating this integral within a neighbourhood for every grid point,
however, is equivalent to simply evaluating the discrete convolution with a finer grid, which is the
trivial way to deal with aliasing. Instead, my approach is to determine which neighbourhoods contain
curve features, and replace only those grid points’ values with integrals.

3.5.2 Feature Finding

To find which neighbourhoods contain curve features, it suffices to simply identify the points of
intersection of these features with the edges of neighbourhoods, so that any neighbourhood lying
on such an edge contains a curve featurdﬂ This is illustrated in Figure For an n x m grid, this
process allows all nm neighbourhoods of grid points to be tested for feature presence by testing only
the (n 4+ 1)(m + 1) lines that form edges between them.

As mentioned in Subsection Reference [2] identified that curve features occur where the
discriminant of the characteristic polynomial of the atom Hamiltonian

A(8),8,) = Discy (det (ﬁ((s;), 5 — Aﬂ)) (3.24)

2 Alternatively, curve features could be closed loops contained entirely within that single neighbourhood. I have not
observed closed loop features in practice, and even if they do exist, a grid that is coarse enough to contain an entire such
loop within a single point’s neighbourhood is too coarse to be very useful.

21

-

Figure 3.3: An illustration of feature finding. The grid squares are neighbourhoods around grid
points, and the thick curves represent the features we want to find. The intersections of the feature
curves with the neighbourhood edges are shown by circles, and the neighbourhoods containing these
features are highlighted grey.

has its roots. Because the Hamiltonian is Hermitian and therefore its characteristic polynomial has
exclusively real roots, this discriminant is uniformly non-negative. This means all roots of the dis-
criminant are ‘partial’ (single-variable) local minima, and it is more numerically stable to identify
partial local minima via roots of the discriminant’s partial derivative than to directly find roots of the
discriminant itself. Reference 2| used generic numerical root-finding, but I instead use polynomial-
specific root-finding that uses the polynomial coefficients of A(é{,, 5L) and its partial derivatives. This
has the advantage of finding all roots rather than just one.

6,

Figure 3.4: Tatom grids with curve feature intersections identified by along-edge partial local minima
(white circles) and across-edge partial local minima (black circles). Left has the same domain as
Figure [3.2] and shows aliasing artefacts along curve features, and right is a close-up around a curve
feature, showing duplicate identification and misalignment from the feature’s centre.

The procedure is as follows.

22

5 6/) BA((;I 6/)

1. Precompute the bivariate polynomial coefficients of A(d},, 9,), g?, (6, 6,,) 9,

: 85’2(
((5’ o) because only the detuning variables change over this process.

and 2 93,2

2. To find all the intersections along some (5’ edge (constant 6;), evaluate the univariate polynomial
coefficients of gg‘, (6,) for the edge’s 9,
points of A(d},).

o and perform root-finding with them to find all critical

3. Evaluate A at each critical point. Critical points whose values of A are smaller than those of
their immediately adjacent critical points are local minima and are therefore taken to be curve
feature intersections.

4. Evaluate the polynomial coefficients of g(SA, (6,) and use them to find critical points of A(d},).

5. Evaluate the polynomial coefficients of 2 ((5’) and use them to perform the second derivative

25,2
> 0 for each critical point of A(d},) to identify local minima.

test 8 5, 2
This process is repeated for each §;, edge, and then vice-versa (d, and J;, swapped) for all §;, edges
(constant).

For each of the two edge directions, both partial local minima along the edge and perpendicular to
the edge are identified by this procedure. However, there is an asymmetry between these in that the
former use direct comparisons between critical points and the latter use a second derivative test; the
latter is to avoid having to evaluate extra A values outside the edge being tested. Furthermore, the
second derivative test is done inclusive of exact equality in order to err on the side of false positives
rather than false negatives.

Figure 3.5: Around a curve feature, A often takes the shape of a ‘trench’ which is non-constant at
its bottom. When scanning the gradient (arrows) of A in such a region, the gradient flips around on
either side, but it is not zero at any point, and so it rotates through the parallel and perpendicular
(orange arrows), resulting in this curve feature being found twice.

As is shown by Figure[3.4] this procedure successfully identifies curve features that produce aliasing
artefacts. Additionally, there are curve feature intersections that are found only by the across-edge
test, and not the along-edge test, and so this test is necessary to find all grid point neighbourhoods
containing curve features. Checking both parallel and perpendicular partial local minima, however,
has the side effect of causing many curve features to be identified twice, but this has no effect beyond
slightly increasing computational cost. The reasons for this are explained in Figure Additionally,
these partial local minima are often very slightly misaligned from the actual curve features, by an
amount that is much smaller than most useful grid spacings, and that therefore does not have any
significant effect on the final results of this process.

23

d

+

outer integral

Figure 3.6: The integration within a single grid point’s neighbourhood. The curve feature has an
axis-aligned bounding box (dashed) computed from its edge intersections (filled circles) that is wider
than it is tall proportional to the neighbourhood’s dimensions, and so the outer integral is horizontal
and the inner integral (which is represented by the vertical arrows) is vertical. The inner integral’s
domain is split at curve feature intersections (and surrounding points, which are not shown here).

3.5.3 Neighbourhood Integration

Once the points whose neighbourhoods contain curve features are identified, the integral within the
neighbourhood must be evaluated using some numerical quadrature scheme. To do this, I use the
discriminant once again to perform importance sampling along an inner integral, using Gauss-Lobatto
quadrature, as in Reference [2]. For each intersection point, the inner integral’s domain is split at
intersections with curve features, as well as at addition points surrounding the intersections, with each
interval between splits evaluated using a separate instance of Gauss-Lobatto quadrature. If the inner
integral is along d;,, then for each curve intersection 6;,(*), the split points are 5;(*) itself, 5;(*) + Ypn,

(51'3(*) =+ 3vpn, and (5;(*) + 10,5, where 7,, = 734 is used as an estimate of the homogeneous linewidth
and therefore the thickness of the curve feature. If the inner integral is along 5;“ the splits points from

each intersection 5L(*) are the intersection itself as well as 5L(*) + Vb, 5L(*) + 3y, and 5L(*) + 10y,
where .5 = Y34 + Yaq. Split points outside the bounds of the integral (the neighbourhood edges) are
excluded.

Reference [2] chose the inner and outer integral axes arbitrarily, but the outer integral would ideally
be as close to parallel to the curve feature as possible, because that minimises the distance along the
curve between sample points. To handle this, I re-use the curve intersection data computed in the
previous step to find an axis-aligned bounding box for the curve feature inside the neighbourhood,
and let the outer integral axis be the axis along which this bounding box takes up the largest fraction
of the neighbourhood’s size (Figure [3.6)).

3.6 Experimental Parameters for Model

To summarise, this model requires as input the following parameters:
e Microwave transition frequencies w1 and wsy
e Rabi frequencies (113, €223, (14, 24, and €,

e Microwave transition relaxation lifetimes 7o and 734 and operating temperature T’

e Optical transition relaxation rates 713, 23, Y14, and o4

24

e Optical output waveguide couplings C'14 and Coy
e Inhomogeneous PDF p(d13,d34)

e Atom count N and optical transition frequency wi4.

N merely scales the output signal power uniformly, and therefore does not need much precision, and
can be found through trial and error. Reference [3] quotes an estimate for the operating temperature
of T'~ 1K, and a microwave Rabi frequency €, = 27 x 1 MHz.

3.6.1 Inhomogeneous Broadening

Reference [3] specifies the inhomogeneous distribution as Gaussian with standard deviations I'j,, ~
200 MHz for optical transitions and I'yy, ;, ~ 130 kHz for microwave transitions, with a correlation slope
of —120 (optical/microwave) between them. Using the formula

Ay _ oz
Ax o2

gives a covariance of —2.028 MHz?, and so the inhomogeneous PDF is that of the bivariate normal

distribution
513]) 1 (1 rea)
d = = —) 3.26
p([534 Varders P\ 72 (3.26)

_ [(200MHz)? —2.028 MHz?
E[—2.0281\41&2 (130kHz)? |- (3.27)

slope := (3.25)

3.6.2 Spin Hamiltonian

To find the remaining parameters, I make use of the spin Hamiltonians|35] of the two electronic
quadruplets in this system

A ~ ~T ~
Hy.=pupBlg,.S+T A,.S (3.28)

where subscripts ¢ and e are indices indicating the ground (2F7/2) and excited (>Fj /2) multiplets
respectively, gq . are Zeeman interaction tensors, and Ay . are hyperfine interaction tensors. B is the
external magnetic field, S = [S'x,S'y,S’Z]T is the electron spin operator and I = [fx,fy,fZ]T is the
nuclear spin operator. The symmetry of the crystal site occupied by ytterbium ionsE] means that the
gg.c and Ay . tensors have two eigenvalues, one unique (multiplicity 1) and one non-unique (multiplicity
2). Denoting the unique eigenvalues as g4 and A, . and the non-unique eigenvalues as g, 4. and

Al 4, Equation expands into

Hye = 118l91 ge(BaSe + BySy) + g)g.eB-5:] + ALge(InSe + 1,S,) + Ay o 1.5: (3.29)
where it is assumed without generality that z is the unique axis and « and y are the non-unique axesﬂ
The magnetic field in the benchmarking dataset is B = [0,0,2.09mT]”, of which the only nonzero
component is B,, but the other components are kept for later calculations regarding magnetic field
noise. The interaction tensor elements are shown in Table 3.1

3.6.3 Transition Frequencies

The eigenvectors of H 4 are the four levels of the multiplet (Figure i , and so the transition frequencies
within a multiplet are simply the difference of the corresponding eigenvalues, which gives us

wig = (2| Hy |2) — (1| Hy |1) (3.30)
was = (4 H. |4) — (3| H. |3) (3.31)

where lﬁ.f‘q’e are evaluated with B, = 2.09mT. At zero magnetic field|3|, wis = 27 x 304 501.0 GHz,
and because this is only used to calculate the scale of the output energy (via w14 = w12 + wa3 + ws4),
this is a good enough approximation of the value at B, = 2.09mT.

3In the usual crystallography notation, this is the Doy symmetry group
“In the usual crystallography notation, ¢ || z

25

Parameter Value
Jlg 0.85
g”g —6.08
dle 1.7
Jlle 2.51
Ay 2w x 675 MHz
Allg 21 x —4.82 GHz
A, 27 x 3.37 GHz
A||e 21 x 4.86 GHz

Table 3.1: Interaction tensor elements of the spin Hamiltonian in Equation gig and g, are
from Reference [36], and the remaining values are from from Reference [35].

3.6.4 Dephasing Rates

If we assume that magnetic field noise, which would be caused by the nuclear spin flips in the yttrium
and vanadium of the host crystal, is the dominant source of dephasing in this system, then the
dephasing rates are proportional to

dwi;
%d““dél (3.32)
The transition frequency is
wii = (i Hg,e i) — (1] Hy |1) (3.33)

where the index on the first ﬁg,e is g if i =2 and e if i € {3,4}. Substituting Equation and
differentiating, we obtain

i o |[ggc 118 18) = g5 (1S 1) (334

where the index on the first g, . is the same index as the one on H g,e- In practice, S, is the only nonzero
component of S when restricting these operators to the (|1),]2),3),|4)) basis, and so Equation m
becomes

2
’ (3.35)

ia 5 |91 (152 11) — gy 11 82 1)

3.6.5 Dipole Moments

The remaining parameters are proportional to dipole moment matrix elements. These include the
atomic coupling depolarisation rates

Yije ¢ dij = H<i| d !j>H2 (3.36)

as well as, from Equation
Qij X d||l] (3.37)

where d|;; is the component of d;; parallel to the drive polarisation. In this system, both electric and
magnetic dipoles are proportional to electron spin

d xS, (3.38)
and so the spin Hamiltonian can once again be used. First of all, Equation [3.37] gives a ratio

Qa3 (2]5,13)

between the optical pump Rabi frequencies, where the fact that S, is the only nonzero spin component

has once again been used. The remaining optical Rabi frequencies are set to zero (214 = 0 = Qg4)
because the transduction efficiencies in the benchmarking dataset are quite low (< 107°). Second,

26

from Reference [35], y14(B = 0) = 1.4kHz and ~23(B = 0) = 1.3kHz, and optical transitions |1) <> |3)
and |2) <> |4) are forbidden at zero magnetic field. In terms of the spin operators, these forbidden
transitions are reflected by the fact that

~

(115.(B
<1‘ SZ(B =

)[4) = —(2[S.(B=10)3) #0 (3.40)

0
0)[3) = (2| S.(B = 0) |[4) = 0. (3.41)
The fact that dipole-forbidden transitions have depolarisation rates much lower than dipole-permitted
transitions shows that these optical depolarisations happenA predominantly through dipole emission,
and so I set v;; = Vijc. At B, = 2.09mT, (1]5;[3) = (2|5, |4) take on a small nonzero value, and
(1S, |4) = — (2] S, |3) decrease in magnitude as the levels hybridise. Using Equation

s
Y4 = - 5714(B = 0)
(1158 = 0)|4)]
(21, 13)]
Vo3 = - 5723(B = 0)
(2] 5.(B = 0)|3)|
L (3.42)
(115, 13)
M3 = 3723
(2] 5. 13)
28, 14
Y24 = 3723
(1] 9. |4)

and C14 and Cyy are set accordingly by Equations and [3.12] From Reference [37], 712(B = 0) =
54 ms, and so
. 2
(1] 5.(B =0)|2)]
T2 = - s——T12(B = 0). (3.43)
(118 12)|

In the absence of data on 734, I set it to 10 ms, to match the order of magnitude of 715.

3.6.6 Optical Pump Calibration

From Equation Qo3 x VP where P is the pump power. The equation for this proportionality,
appropriately calibrated, is

Oyy = L2xety/1, /5 (3.44)

Pref

where (23 ref, Pref) is some known ‘reference’ Rabi frequency-power pair for calibration, and 7 is the
efficiency with which power from the source makes it into the waveguide. Reference [3] contains a
frequency-power pair (Q93 e = 27 X 6 MHz, Pef = 2pW), and my supervisor provided data with
which to calibrate the efficiency to n = 0.055 (Appendix .

3.7 Results

To evaluate the model, I computed power-frequency grids with frequency domain and input param-
eters corresponding to the experimental data. Because the model does not include the noise in the
experimental apparatus, I add simulated noise to the computed power. This consists of random sam-
ples from the experimental frequency sweep with —40dBm optical pump power, which contains no
discernible transduction signal, only noise. A comparison of the resultant power-frequency grids with
experimental data is shown in Figure [3.7]

27

Model, Obeys Constraints Model, Breaks Constraints Experiment

s 1500 s 1500 s 1500 \

g 3 3 ‘

¢ 1000 ¢ 1000 ¢ 1000

o] o] o]

= = =

§ 500 § 500 § 500

3 3 3
3360 3380 3360 3380 3360 3380
wy/2n (MHz) wy/2n (MHz) wy/2n (MHz)

Figure 3.7: Power-frequency grids from the model when obeying the constraints found in Section
(left) and when disobeying those constraints (middle) as compared with the experimental data (right)
shown in Figure with optical pump power —4 dBm. All three plots have the same frequency and
colour scales. A simple noise model is used in this comparison.

After the analysis in Section the remaining free parameters are N and 7o4, as well as some
leeway in adjusting €93 since the calibration parameters €93 o and Pr have only one significant
figure of precision. I adjusted these free parameters to find a set of parameters that best replicated
the experimental data, which resulted in N = 1 x 10", 495 = 10kHz, and an adjustment to the Qo3
calibration of Pt = 1.7nW.

This showed only superficial qualitative agreement, and so I next adjusted the parameters while
breaking the constraints identified in Section [3.6} finding better agreement with N = 1x 1010, 712(B =
0) = 1 s, and a modified optical hybridisation ratio

~ 0.12 — 0.38, (3.45)

and all downstream variables 712, Y13, V23, Y14, 724, and €13 modified accordingly using Equations
[3.43] [3.42] and [3.39, preserving the phase of €13/ a3.

In both model grids, we see dark curve features, corresponding to destructive interference between
the two output transitions, that span the distance between the two atomic transition frequencies wa3
and w13, which are also seen in the experimental data, and can only be produced by a model that
accounts for all four levels and both output transitions simultaneously. However, their locations are
much more accurate to the experimental data in the model grid evaluated using the constraint-breaking
parameter set. Furthermore, the constraint-obeying grid has a dynamic range much greater than that
of the experimental data, with the bright transduction signal oversaturating the colour scale (or else,
by a downscaling of N, losing the dark features in the noise.), while the constraint-breaking grid gives
much better quantitative agreement.

However, even the better of the two grids is not perfect. The main discrepancy is that the
bright transduction signals are much broader than in the experimental data. Additionally, the re-
gion immediately surrounding (wy,wp) = (ws4,wi3) is darker than its surroundings in the model
grid, whereas the opposite is true in the experimental data. What is not problematic, however, is
that the features in model grid are translated along the d,, axis (horizontal in the plot) compared to
their locations in the experimental data; this shift is by an amount smaller than the uncertaintyﬂ on
Al =w34(B =0) =271 x3.37 GHz of £27 x 5 MHz. Indeed, this model and experimental data could
be used, in theory, to find a more precise estimate of that spin Hamiltonian parameter.

Given that the experimental parameters relevant to the model are not known with certainty, espe-
cially since parameters ostensibly constrained by theory must be modified to obtain good agreement
with experiment, these discrepancies between model and experiment do not necessarily indicate defi-
ciencies in the model. Instead, they might simply be the result of input parameters to the model not

*Implied by the number of significant figures

28

matching those used in the experiments that produced the benchmarking data.

3.7.1 Accounting for Constraint Breaking

In this subsection, I offer some possible explanations for why the true parameters of the benchmark
experiment might be the constraint-breaking parameters that give good model-experiment agreement,
and why they might be different to those calculated in Section [3.6)

Lifetime 79

The depolarisation lifetime of a dipole transition depends not only on the dipole moment matrix el-
ement of the transition, which is a fundamental constant of the emitter, but also on the per-photon
electromagnetic field strength, which depends on the environment surrounding the emitter, i.e. whether
it is in free space, a waveguide, or a resonator, and the specific geometries of the latter two. Equiv-
alently, and more commonly, this is expressed in terms of the local density of states (LDOS) around
the emitter.

Reference , which measured 112(B = 0), did so in a device different to that with which the
experimental data was produced, and so this could potentially be source of this discrepancy.

Hybridisation Ratio

1800
1600
1400
1200
1000

800

wp/2m Offset (MHz)

600

400

200

3350 3360 3370 3380 3390
wy/2n (MHz)

Figure 3.8: Manual axis-aligned hyperbola fits to the dark features surrounding the wis and
wastransitions. The (red) hyperbola surrounding the w3 (lower) transition has a centre of (3369.2, 652)
in the axis coordinates shown and a vertex-to-vertex distance of 27 x 66 MHz. The (black) hyperbola
surrounding the wy3 (upper) transition has a centre of (3370.1,1350) and a vertex-to-vertex distance
of 2m x 12.6 MHz. The ratio of these vertex-to-vertex distances is 0.19.

The hybridisation ratio of 0.38 was identified using the experimental data. Specifically, the hyperbolic
dark featuresﬂ surrounding the transition frequencies are expected from theory to have vertex-to-vertex
distances proportional to the Rabi frequencies on the transitions. Measuring these (Figure |3.8)

S Rabi splittings

29

yielded a ratio of 0.19. This does not produce a good fit in the model, but its double, 0.38, does; it is
unclear why this factor of two is needed.

This leaves the question of why the hybridisation ratio is so large, compared to the value at
B, = 2.09mT of 0.12. One possibility would be that that magnetic field value is wrong, and the
magnetic field is in fact much stronger than that. As Figure [3.9) shows, a value of B, ~ 8 mT would
produce a hybridisation ratio of 0.38. However, such a strong magnetic field would create Zeeman shifts
much larger than those observed in the experimental data, translating every feature by a substantial
amount. Therefore, such a magnetic field strength is implausible.

Hybridisation Ratio vs Magnetic Field Strength

0.4 1
............... e Y Fe . XTI
1
1
0.3 |
m I
) 1
& 0.2 1 |
S 1
1
011 ! - 2.00mT
T L d13/d23 =0.38
0.0 . . . i
0 2 4 6 8 10

B, (mT)

Figure 3.9: A plot of hybridisation ratio vs magnetic field strength B,. B, = 2.09mT (dashed vertical
line) and hybridisation ratio ||di3|[* /||d2s||* = 0.38 (dotted horizontal line) are superimposed, with
the latter intersecting the curve at about B, ~ 8 mT.

30

Chapter 4

Biphoton Generation in 3-Level
Systems

This chapter describes original work on modelling the generation rate of photon pairs from biphoton
generation in a three-level system, using both dynamical and steady-state models. This happens in
the same type of atoms-in-cavity system as in Chapter [2, and this chapter begins by describing how
I adapt the three-level transduction model of Reference |2 for biphoton generation. In addition to a
steady-state model of the kind in Reference [2], I produce an approximation of the dynamical model
which reduces the degrees of freedom to a number tractable to simulate. This chapter then presents
results for both the steady-state and dynamical models. Unlike the four-level transduction model of
Chapter [3], these results are not benchmarked against any specific experimental data.

4.1 Dynamical Model

Adapting from Equations and and using the 6;; 1 — pji 1, semiclassical approxima-
tion as per Section a semiclassical model for transduction in a three-level system with an ensemble

of N atoms is the system of N + 2 coupled differential equations

N

do . . . ; +
T —10co0t — 1 ;go,kpiﬂ,k - wa + VYocin (4.1)
dp - Vi + 7, —
. . *) c
I = —10cu8 — Zggu,kpjuimk’ _ %5 + /Apefin (4.2)
Pk _ r (0 B)p = —ilH 4]+ Lace i/ 4
E - k(%ﬁ)Pk - _Z[atom,k(aaﬁ)apk] + dec,kPk (3)
and the semiclassical input-output relations
Qout = —Qn + v/ Yocl (4'4)
Bout = —Pin + vV ’Yucﬁ- (4'5)

Here, |i,) <+ |j,) is the microwave transition. To adapt this for biphoton generation, I first swap the
indices of the optical pump and signal transitions so that |1) — |3) is being pumped and |3) — |2)
and |2) — |1) are producing output signals, turning Equation into

N

do) . N ; +
% = _Z(Scoa —1 ; go,kpjoio,k? - wa + V Yoc®in (46)

31

where |j,) — |i,) is the optical-emitting transition, and the driven atom Hamiltonian into

0 g B O]
IukB Ouk g;ka* A-system
Fluomp = { £k 9ok Opk] . (4.7)

0 9y 1O Qp’k
Gok® Ook g;‘“kﬁ* V-system
L%k GukB Opk

\

Next, I set the input amplitudes to aj, = 0 = iy, because the optical and microwave cavities are
used only for output in biphoton generation, not for any input. Note that the input operators are
not zero because of this, only their expectation values. Furthermore, I set the cavity-signal detunings
dco = 0 = 0y This is because there are two output frequencies but only one input (pump) frequency,
and so, unlike in transduction, an experimenter cannot arbitrarily control the output frequencies by
adjusting the input frequency. Instead, the output frequencies are constrained to be as close to the
cavity resonances as possible. Putting these together, the cavity Langevin equations and input-output
relations become

do al Yoi + .
i —0 Y G 1 Piviok — %0‘ (4.8)
k=1
g - Vi + 7
. * i ne

T _Z;gu,kpj#iu,k - Tﬁ (4.9)
Qout = v/ Yoeclk (4.10)
Bout = \/'Yucﬂ‘ (4‘11)

4.1.1 Vacuum Rabi Frequency

Suppose that an atom in this system is initially in the ground state so that its density matrix p = |1) (1],
and consider what happens in the model described so far as the optical pump (2, is applied. This
pump will transfer population from |1) to |3) and generate coherence (pi13 # 0) between these two
levels, so that, in the absence of decoherence, the density matrix becomes

p11 0 pi3
p=10 0 o]. (4.12)
p31 0 ps3

Now consider the effect of decoherence. Depolarisation will transfer some population into level |2) so
that pos # 0, and dephasing will decrease the magnitude of all off-diagonal elements, of which only
p13 = pa; are nonzero. At no point in this process of pumping the atom with losses, then, do pa1 or p3»
become nonzero. This means that there is no emission into the cavities, because those density matrix
elements are the ones in the cavity Langevin equations. This is clearly unphysical, and therefore
indicates a deficiency in the model described so far.

The problem is that the biphoton generation process is kickstarted, from cavities in vacuum, by
interactions between the atoms and fluctuations in the cavity’s vacuum field. This model is a mean-
field approximation, and therefore does not account for fluctuations in the cavity field. This vacuum
interaction can be treated as having an effective Rabi frequency equal to the atom-cavity coupling,
o,k for the optical cavity and g, for the microwave cavity, known as a vacuum Rabi frequency|26].
To capture this in the model, then, I modify the cavity Rabi frequencies from Equation [4.7]

Qo,k = go,ka (4.13)
Qi = gu kb (4.14)

32

so that, as @ — 0, [Qo k| — |go k| (Vice-versa for 3 and €, ;). Such a modified expression should also
be approximately the same as the original for large cavity amplitudes

a>1 = Q= gor (4.15)
>1 = Qﬂyk ~ gu,kﬁ (416)

where stimulated emission, which is a function of the mean field, dominates. If I furthermore re-
quire that the phases of the original and modified cavity Rabi frequencies match, then the modified
expression should be of the form

Qo = goge' " f(lal) (4.17)
Quk = gure ™27 £(18)) (4.18)
where f : Ry — Ry is a function for which f(0) = landz > 1 = f(z) =~ x. Iselect f(z) = V22 +1

as such a function, to obtain the modified Rabi frequencies

Qo = Gore 8\ /|a|* +1 (4.19)
Qi = guwe 501817 + 1. (4.20)

4.2 Steady States

Taking the approach of Subsection [2.3.1] the steady states of Equations[d.8 and [£.9]can be expressed as
a root-finding problem by replacing the dynamical atomic density matrices with steady-state density
matrices and replacing the sum over the atoms with an integral over the inhomogeneous distribution,
obtaining expressions for the ‘residuals’ which are zero at steady state

. * o1 + oc
Qres = —1Nog, // Pjvio,55 (0t B, 012, 023)p(d12, 623) dd12dda3 — %a (4.21)
. % o Yui + Vpe
Bres = —iNugy, [[Pjuin.ss(a, 8,012, 023)p(d12, 023) dd12dd23 — Tﬁ- (4.22)

Here, the same simplifying assumptions as in Subsection have been made about the atom-cavity
couplings and pump Rabi frequencies, namely that Q, = €, is identical across all atoms, that
N, < N atoms have the same optical cavity coupling strength g, = g, and the remaining N — N,
atoms do not couple to the optical cavity at all, and that N, < N atoms have the same microwave
cavity coupling strength g, = g, with the remaining N — N, atoms not coupling to the microwave
cavity at all.

4.3 Super-Atom Dynamics

The N +2 coupled differential equations of this model are intractable to solve the dynamics of, because
N is very large in realistic systems. To make this tractable, I make the approximation that the N
atoms can be partitioned into n < N sets with the same atom-cavity couplings and inhomogeneous
shifts. Those variables are all that make one atom’s dynamics (in terms of density matrices) different
from any other, so all atoms within one such set have the same density matrix. Thus, only n + 2
coupled equations with n density matrices need to be solved. Letting £ be an index over these sets
and wy be the number of atoms in set ¢ (of course), wy = N), the system of equations becomes

da o

= Y wi i — 2 (4.23)
/=1

ds U gl

E - _Zzweglh[pjuiwe - ?“6 (4'24)
/=1

dp .

= Li(a, B)pe (4.25)

33

where v, = Yo + Yoc and v, = Yui + Yue- From these equations, wy can alternatively be interpreted
as scale factors applied to the atom-cavity coupling strengths in the cavity Langevin equations (but
not in the atom Master equations) to turn many atoms into a smaller number of ‘super-atoms’ that
interact more strongly with the cavities. Thus, w, need not necessarily even be integers because, by
this interpretation, they are simply weights applied to the super-atoms.

4.3.1 Numerical Methods

A system of ordinary differential equations (ODEs) can be expressed as a single vector ODE 2 = f(x),
so that numerical methods for ODEs can be applied. The system in Equations [£.23] [£.24] and [£.25
can be expressed in this way with

x = [Rea,Ima,Re B,Im B3, p11,1, Re pra,1, - . ., pasa]’ € R, (4.26)

which contains the four cavity degrees of freedom followed by, for each super-atom, the nine degrees of
freedom of its density matrix, as in Equation Iimplemented and used the 4th-order Runge-Kutta
method[33] (RK4).

4.4 Results

Both the steady-state and super-atom dynamics models were tested using parameters corresponding to
the three-level A-system in Er:YSO in Reference [2], which are shown in Table[d.1] For the steady-state
model, N, = N = N, was used, and for the super-atom dynamics model, n = 1000000 super-atoms
with equal weight wy = N/n were used. The super-atom simulations were initialised with all super-
atoms in the ground state p, = |1), (1|, and with small cavity occupancies o = 1 = 3.

Parameter Value Parameter Value

w12 21 x 5186 MHz o 2w x 419 MHz
T12 11s ou 21 x 5 MHz
73 11ms N 1 x 1016
di3 1.63 x 10732Cm Voi 27 x 7.95 MHz
das3 1.15x 10732 Cm Yoc 21 x 1.7 MHz
T13 T3d35/(d3 + d35) Vi 21 x 650kHz
T23 ng%:g/(d%?, + d%3) Yuc 27 x 1.5 MHz
T 46K Jo 51.9Hz
Yod 1 MHz u 1.04 Hz
Y3d 1 MHz Q, 35kHz

Table 4.1: The parameters common to all runs of both the steady-state and super-atom dynamics
models, reproduced from the parameters of the Er:YSO A-system in Reference [2] to provide a set
of realistic parameters. g, and g, are the same across all atoms that have a nonzero coupling to the
respective cavities.

4.4.1 Super-Atom Simulations

Results for the super-atom model are shown in Figure for small detunings d, = —100kHz and
0, = 1 MHz, and in Figure for large detunings 6, = —6.50, and 9, = 8o, with two runs each that
have identical parameters, including identical inhomogeneous shift samples. The timescales shown,
of dozens of microseconds, are much longer than the cavities’ sub-microsecond characteristic dynam-
ical timescales (their decay lifetimes), but much shorter than the atomic populations’ characteristic
dynamical timescales of milliseconds to seconds.

There exists an adiabatic approximation of biphoton generation in a large-detuning regime[12]
analogous to the adiabatic model of transduction in Section The large detunings were chosen
so that they satisfied the requirements of the adiabatic approximation, and the small detunings were

34

chosen so that they did not. These two sets of detunings therefore corresponded to distinct regimes
of behaviour.

Note that these results can largely only be interpreted qualitatively, because the same Rabi fre-
quency can be produced by many different pump powers. Thus, power efficiency, and whether the
pump power is constant over time or not, cannot be determined.

Small Detuning

Small Detuning (Non-Adiabatic Regime)

Generation Rate
1024

1020 .
1016 .

1012 .

Photon Rate (Hz)

108

Time (us)

Coherences
100

10—3 —

10—6 —

107°

Time (us)

Populations
1.00

— 1)
— 12)
0.50 . . — |3)

0.75 A

0.25 A

0.00

N

10 20 30 40 50
Time (us)

Figure 4.1: Super-atom simulation results for detunings J, = —100kHz and 6, = 1 MHz, which are
not in the regime where the adiabatic approximation (Section holds. Solved using RK4 with
time step At = 10ps. Solid and translucent curves are two separate runs with identical parameters
(including atom detunings), demonstrating amplification of floating-point errors.

The small-detuning super-atom runs exhibit highly non-convergent behaviour in the cavity dy-
namics for the entire length of the simulations, which does not visibly suggest that any steady state is
being asymptotically approached. Furthermore, the two runs yielded very different dynamics, despite
the fact that their parameters, initial conditions, and numerical ODE truncation are all identical,
which indicates that floating-point errorsﬂ were amplified over time. This great divergence of dynam-

!Floating-point arithmetic is, in principle, deterministic, so one may wonder why there are different rounding errors
in different simulation runs. This is because the super-atom simulations are implemented with the super-atom dynamics
running in parallel, and so the sums over super-atom density matrix elements in Equations [£:23] and [£:24] are done in an
undefined, variable order. Thus, the nonassociativity of floating point addition leads to slightly different rounding errors
each time.

35

ics from very similar earlier states is characteristic of a chaotic system. Such chaotic behaviour in
light-matter systems has also been observed experimentally|39]. Additionally, at some points, there
is pulsed, periodic-like behaviour; such behaviour has also been observed in experiments in biphoton
generation[40].

Large Detuning

Large Detuning (Adiabatic Regime)

Generation Rate

E 1023 _
9
g 1020 _
§ |a'0ut|2
[e) 17 |
£ 10 — |Boutl?
T T T T T
0 10 20 30 40 50
Time (us)
Coherences
100
1072 - INJE=
— (P12}l
107 A — [{p23hl
— (P13}l
10°6 T T T T T
0 10 20 30 40 50
Time (us)
Populations
1.00 r
0.75 ~
—_ 1)
0.50 - [2)
- [3)
0.25 4+
\
000 T T T T T
0 10 20 30 40 50
Time (us)
Figure 4.2: Super-atom simulation results for detunings 6, = —6.50, and 0, = 80y, which are

in the regime where the adiabatic approximation holds. Solved using RK4 with time step At =
50 ps. Rendered on the plots but indistinguishable due to overlap are distinct solid and translucent
curves corresponding to two separate runs with identical parameters (including atom detunings),
demonstrating that floating-point errors do not amplify over time.

By contrast, the large-detuning super-atom runs show quite simple dynamics that are consistent
between the two runs, which show that the system is not chaotic for these large detunings. Further-
more, the dynamics are slowing down as time passes, and appear to be asymptotically approaching
a steady state. Both of these facts are consistent with the adiabatic approximation holding at these
large detunings. However, resultsﬂ from the steady-state model, on the other hand, suggest that this
apparent asymptote may not actually be a steady state.

20r lack thereof

36

Stiffness

All runs of the super-atom model required time steps much smaller than the shortest characteristic
timescale 1/7, =~ 16.5ns of the system, otherwise the scales of the system dynamics variables grew
unphysically large (e.g. tr g, > 1) until exceeding the floating point limit and polluting every variable
with oo and NaN. Specifically, At = 10 ps was used for the small detuning and At = 50 ps was used
for the large detuning. This result indicates that this ODE problem is stiff.

4.4.2 Steady States

When running the steady-state model, the root-finding for Equations and does not converge
on any nontrivial solution, for both small and large detunings. This is despite the fact that the
large-detuning super-atom simulations appear to be converging to a steady state. Indeed, there is no
convergence even when using the final cavity amplitudes of those super-atom simulations as an initial
guess for the steady state root-finding.

4.5 Implicit Euler Method

Because the ODE problem in Equations [4.23] [4.24] and [4.25] is stiff, an implicit numerical method is
more suitable than the explicit RK4 method. I describe here a procedure for implementing such a
method, namely the implicit Euler method

x' =x+ Atf(x) (4.27)

where x’ is the next time step after x. This equation cannot be solved explicitly for x’, and is instead
a root-finding problem, which is what is meant by an ‘implicit’ method. Rearranging Equation
the root-finding problem is to find the x’ for which the residual

Xres = X — X+ Atf(x)) (4.28)

is zero. Breaking this down into «, 8, and py components and substituting the relevant differential
equations for f,

Qres = @ — o — iAth:wgg;fp;oimz — %QAto/ (4.29)
Zil
s = = 8~ iOY wigh i, 0~ (4:30)
/=1
Prese = pr — Py + AtL(o, B') . (4.31)
In Equation each ¢ is independent, and so they can be solved for pres ¢ = 0 to obtain
AL, B) = 1)y = —. (4.32)

Therefore, for a given guess of cavity amplitudes o and 3, guesses of pj, can be produced so that e
and (s are the only nonzero residuals. This root-finding problem has therefore been reduced from
having 9n + 4 real degrees of freedom to just the four real degrees of freedom of the cavities.

37

Chapter 5

Conclusion

Hybrid microwave-optical quantum systems have a key role to play in efforts to produce large-scale
quantum technology systems, as well as interoperating different quantum technologies. In particular,
hybrid microwave-optical transducers and entangled photon pair generators are important tools for
producing entanglement across lengths and inside volumes too large to cool to cryogenic temperatures.
Atomic systems, in particular using rare-earth atoms in crystals, are an appealing platform with which
to build such technologies. However, our understanding of these systems, and therefore our ability to
optimise them, is incomplete. I have produced, and presented in this thesis, numerical models of such
systems in realistic parameter spaces. These can be used as an aid to improve our understanding of
these systems.

I produced a model that computes the output power of atomic ensemble based transduction, that
accounts for four atomic energy levels, rather than just three as in prior modelling work. This allows
the model to capture the effect of interference between the outputs of two atomic transitions, which
can have a large effect on the efficiency of such a transducer. Even ‘three-level’ transduction schemes
often have a fourth level nearby, making interference effects broadly relevant. The formalism can
readily be extended to systems with more than four levels and more than two interfering transitions.

This four-level transduction model shows qualitative agreement with experimental data, reproduc-
ing the essential features measured in a frequency sweep. There is still some quantitative discrepancy
between model results and experimental data, which reflects uncertainty in the experimental parame-
ters. Future work could involve better evaluating the model by either further refining the parameters
for a better match with the experimental data used here, or identifying or producing another experi-
mental dataset whose parameters relevant to the model are known with more certainty.

Separately, I produced a model for the photon pair generation rate of an atomic ensemble based
biphoton generation process using a three-level system. The dynamical behaviours produced by the
model are qualitatively explainable by and consistent with both theory and analogy to experimental
results in other light-matter interaction systems. The results also demonstrated that the ODE problem
in the model is stiff, which highlights that the results could be improved with a more suitable numerical
approach than the RK4 method used. I theorised an efficient implementation of such a method.

Future work on this biphoton generation model could include implementing better numerical meth-
ods, as well as performing biphoton generation experiments to produce a dataset with which to validate
the model. Separately, future work could be to build from this model to produce a model that predicts
not only generation rate, but also the degree of entanglement generated within photon pairs. This
is important because the degree of entanglement, not only the rate of photon pair generation, affects
the rate at which quantum information can be transmitted. This could be done by replacing the
mean-field approximation with a ‘Gaussian-field’ approximation that incorporates the (co)variances
of electromagnetic field operators in addition to expectation values.

In conclusion, the numerical models developed in this project show potential to be useful for
understanding microwave-optical transducers and pair generators, thereby aiding the development
of such technologies. However, they lack conclusive benchmarks against experimental results, such
benchmarking being a prime avenue of future work.

38

Bibliography

[10]

Xavier Fernandez-Gonzalvo et al. “Cavity-enhanced Raman heterodyne spectroscopy in Er* :
Y2SiO5 for microwave to optical signal conversion”. In: Phys. Rev. A 100 (3 Sept. 2019),
p. 033807. por: |10.1103/PhysRevA . 100 . 033807. URL: https://link. aps.org/doi/10.
1103/PhysRevA.100.033807.

Peter S. Barnett and Jevon J. Longdell. “Theory of microwave-optical conversion using rare-
earth-ion dopants”. In: Phys. Rev. A 102 (6 Dec. 2020), p. 063718. DOI: |10.1103/PhysRevA.
102.063718. URL: https://link.aps.org/doi/10.1103/PhysRevA.102.063718.

John G. Bartholomew et al. “On-chip coherent microwave-to-optical transduction mediated by
ytterbium in YVO4”. en. In: Nature Communications 11.1 (June 2020), p. 3266. ISSN: 2041-1723.
DOI: 10.1038/s41467-020-16996-x. URL: https://www.nature.com/articles/s41467-020-
16996-x (visited on 08/08,/2023).

David P. DiVincenzo. “The Physical Implementation of Quantum Computation”. In: Fortschritte
der Physik 48.9-11 (2000), pp. 771-783. DOI: https://doi.org/10.1002/1521-3978(200009)
48:9/11<771::AID-PROP771>3.0.C0;2-E. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/1521-3978%28200009%2948%3A9/11%3C771%3A%3AAID-PROP771%3E3.0.C0%3B2-
E. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-3978%28200009%2948Y
3A9/11%3C771%3A%3AAID-PROP771%3E3.0.C0%3B2-E.

Ryan J. MacDonell et al. “Analog quantum simulation of chemical dynamics”. In: Chem. Sci.
12 (28 2021), pp. 9794-9805. DOI: |10.1039/D15C02142G. URL: http://dx.doi.org/10.1039/
D1SC02142G.

Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. “Quantum-Enhanced Measurements:
Beating the Standard Quantum Limit”. en. In: Science 306.5700 (Nov. 2004), pp. 1330-1336.
ISSN: 0036-8075, 1095-9203. pDOI: 10.1126/science.1104149. URL: https://www.science.
org/doi/10.1126/science.1104149 (visited on 12/11/2023).

Charles H. Bennett and Gilles Brassard. “Quantum cryptography: Public key distribution and
coin tossing”. en. In: Theoretical Computer Science 560 (Dec. 2014), pp. 7-11. 1SsN: 03043975.
DOI: |10.1016/j.tcs.2014.05.025. URL: https://linkinghub.elsevier.com/retrieve/
pii/S0304397514004241 (visited on 12/11/2023).

Hua-Lei Yin et al. “Measurement-Device-Independent Quantum Key Distribution Over a 404
km Optical Fiber”. en. In: Physical Review Letters 117.19 (Nov. 2016), p. 190501. 1ssN: 0031-
9007, 1079-7114. poI: |10.1103/PhysRevLett.117.190501. URL: https://1link.aps.org/doi/
10.1103/PhysRevLett.117.190501 (visited on 07/25/2023).

Wenjamin Rosenfeld et al. “Event-Ready Bell Test Using Entangled Atoms Simultaneously
Closing Detection and Locality Loopholes”. en. In: Physical Review Letters 119.1 (July 2017),
p. 010402. 1ssN: 0031-9007, 1079-7114. DOI: [10.1103/PhysRevLett.119.010402. URL: http:
//link.aps.org/doi/10.1103/PhysRevLett.119.010402 (visited on 12/11/2023).

H.-J. Briegel et al. “Quantum Repeaters: The Role of Imperfect Local Operations in Quan-
tum Communication”. In: Phys. Rev. Lett. 81 (26 Dec. 1998), pp. 5932-5935. DOI: 10.1103/
PhysRevLett.81.5932. URL: https://link.aps.org/doi/10.1103/PhysRevLett.81.5932.

39

https://doi.org/10.1103/PhysRevA.100.033807
https://link.aps.org/doi/10.1103/PhysRevA.100.033807
https://link.aps.org/doi/10.1103/PhysRevA.100.033807
https://doi.org/10.1103/PhysRevA.102.063718
https://doi.org/10.1103/PhysRevA.102.063718
https://link.aps.org/doi/10.1103/PhysRevA.102.063718
https://doi.org/10.1038/s41467-020-16996-x
https://www.nature.com/articles/s41467-020-16996-x
https://www.nature.com/articles/s41467-020-16996-x
https://doi.org/https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1521-3978%28200009%2948%3A9/11%3C771%3A%3AAID-PROP771%3E3.0.CO%3B2-E
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1521-3978%28200009%2948%3A9/11%3C771%3A%3AAID-PROP771%3E3.0.CO%3B2-E
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1521-3978%28200009%2948%3A9/11%3C771%3A%3AAID-PROP771%3E3.0.CO%3B2-E
https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-3978%28200009%2948%3A9/11%3C771%3A%3AAID-PROP771%3E3.0.CO%3B2-E
https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-3978%28200009%2948%3A9/11%3C771%3A%3AAID-PROP771%3E3.0.CO%3B2-E
https://doi.org/10.1039/D1SC02142G
http://dx.doi.org/10.1039/D1SC02142G
http://dx.doi.org/10.1039/D1SC02142G
https://doi.org/10.1126/science.1104149
https://www.science.org/doi/10.1126/science.1104149
https://www.science.org/doi/10.1126/science.1104149
https://doi.org/10.1016/j.tcs.2014.05.025
https://linkinghub.elsevier.com/retrieve/pii/S0304397514004241
https://linkinghub.elsevier.com/retrieve/pii/S0304397514004241
https://doi.org/10.1103/PhysRevLett.117.190501
https://link.aps.org/doi/10.1103/PhysRevLett.117.190501
https://link.aps.org/doi/10.1103/PhysRevLett.117.190501
https://doi.org/10.1103/PhysRevLett.119.010402
http://link.aps.org/doi/10.1103/PhysRevLett.119.010402
http://link.aps.org/doi/10.1103/PhysRevLett.119.010402
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevLett.81.5932
https://link.aps.org/doi/10.1103/PhysRevLett.81.5932

[17]

[18]

Alfredo Rueda et al. “Efficient microwave to optical photon conversion: an electro-optical re-
alization”. In: Optica 3.6 (June 2016), pp. 597-604. DOI: |10 . 1364 /0PTICA . 3.000597. URL:
https://opg.optica.org/optica/abstract.cfm?URI=optica-3-6-597.

Alfredo Rueda et al. “Electro-optic entanglement source for microwave to telecom quantum state
transfer”. In: npj Quantum Information 5.1 (2019), p. 108.

R. Sahu et al. “Entangling microwaves with light”. In: Science 380.6646 (2023), pp. 718-721.
DOI: 10.1126/science . adg3812. eprint: https://www.science.org/doi/pdf/10.1126/
science.adg3812. URL: https://www.science.org/doi/abs/10.1126/science.adg3812.

Joerg Bochmann et al. “Nanomechanical coupling between microwave and optical photons”. In:
Nature Physics 9.11 (2013), pp. 712-716.

Andrew P Higginbotham et al. “Harnessing electro-optic correlations in an efficient mechanical
converter”. In: Nature Physics 14.10 (2018), pp. 1038-1042.

Matthias U Staudt et al. “Coupling of an erbium spin ensemble to a superconducting resonator”.
In: Journal of Physics B: Atomic, Molecular and Optical Physics 45.12 (June 2012), p. 124019.
DOI: 10 .1088/0953-4075/45/12/124019. URL: https://dx.doi.org/10.1088/0953-
4075/45/12/124019.

S. Probst et al. “Anisotropic Rare-Earth Spin Ensemble Strongly Coupled to a Superconducting
Resonator”. In: Phys. Rev. Lett. 110 (15 Apr. 2013), p. 157001. DOI: |10.1103/PhysRevLett .
110.157001. URL: https://link.aps.org/doi/10.1103/PhysRevLlett.110.157001.

Nicholas J. Lambert et al. “Coherent Conversion Between Microwave and Optical Photons—An
Overview of Physical Implementations”. In: Advanced Quantum Technologies 3.1 (2020), p. 1900077.
DOI: https://doi.org/10.1002/qute.201900077. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/qute.201900077. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1002/qute.201900077.

Nikolai Lauk et al. “Perspectives on quantum transduction”. In: Quantum Science and Technol-
ogy 5.2 (Mar. 2020), p. 020501. DOI: 10.1088/2058-9565/ab788a. URL: https://dx.doi.org/
10.1088/2058-9565/ab788a.

Milos Ranci¢ et al. “Coherence time of over a second in a telecom-compatible quantum memory
storage material”. In: Nature Physics 14.1 (2018), pp. 50-54.

Manjin Zhong et al. “Optically addressable nuclear spins in a solid with a six-hour coherence
time”. In: Nature 517.7533 (2015), pp. 177-180.

Thomas Bottger et al. “Effects of magnetic field orientation on optical decoherence in Er3* :
Y2SiO5”. In: Phys. Rev. B 79 (11 Mar. 2009), p. 115104. DO1: 10.1103/PhysRevB.79.115104.
URL: https://link.aps.org/doi/10.1103/PhysRevB.79.115104.

J. H. Van. Vleck. “The Puzzle of Rare-earth Spectra in Solids.” In: The Journal of Physical
Chemistry 41.1 (1937), pp. 67-80. DOI: 10.1021/j150379a006. eprint: https://doi.org/10.
1021/3j150379a006. URL: https://doi.org/10.1021/j150379a006.

B.G. Wybourne. Spectroscopic Properties of Rare Earths. Interscience Publishers, 1965. 1SBN:
9780470965078. URL: https://books.google.com.au/books?id=I91EAAAATAAJ.

E.T. Jaynes and F.W. Cummings. “Comparison of quantum and semiclassical radiation theories
with application to the beam maser”. In: Proceedings of the IEEE 51.1 (1963), pp. 89-109. DOI:
10.1109/PR0OC.1963.1664.

Christopher Gerry and Peter Knight. Introductory Quantum Optics. Cambridge University Press,
2005. 1SBN: 9780521527354

D.F Walls and Gerard J Milburn. Quantum Optics. eng. 2nd ed. Berlin, Heidelberg: Springer
Nature, 2008. 1SBN: 3540285741.

J. J. (Jun John) Sakurai and Jim Napolitano. Modern Quantum Mechanics. eng. Third edition.
Cambridge: Cambridge University Press, 2021. 1SBN: 9781108587280.

40

https://doi.org/10.1364/OPTICA.3.000597
https://opg.optica.org/optica/abstract.cfm?URI=optica-3-6-597
https://doi.org/10.1126/science.adg3812
https://www.science.org/doi/pdf/10.1126/science.adg3812
https://www.science.org/doi/pdf/10.1126/science.adg3812
https://www.science.org/doi/abs/10.1126/science.adg3812
https://doi.org/10.1088/0953-4075/45/12/124019
https://dx.doi.org/10.1088/0953-4075/45/12/124019
https://dx.doi.org/10.1088/0953-4075/45/12/124019
https://doi.org/10.1103/PhysRevLett.110.157001
https://doi.org/10.1103/PhysRevLett.110.157001
https://link.aps.org/doi/10.1103/PhysRevLett.110.157001
https://doi.org/https://doi.org/10.1002/qute.201900077
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.201900077
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.201900077
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900077
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900077
https://doi.org/10.1088/2058-9565/ab788a
https://dx.doi.org/10.1088/2058-9565/ab788a
https://dx.doi.org/10.1088/2058-9565/ab788a
https://doi.org/10.1103/PhysRevB.79.115104
https://link.aps.org/doi/10.1103/PhysRevB.79.115104
https://doi.org/10.1021/j150379a006
https://doi.org/10.1021/j150379a006
https://doi.org/10.1021/j150379a006
https://doi.org/10.1021/j150379a006
https://books.google.com.au/books?id=I91EAAAAIAAJ
https://doi.org/10.1109/PROC.1963.1664

[37]

C. W. Gardiner and M. J. Collett. “Input and output in damped quantum systems: Quantum
stochastic differential equations and the master equation”. In: Phys. Rev. A 31 (6 June 1985),
pp. 3761-3774. DOI: |10.1103/PhysRevA.31.3761. URL: https://link.aps.org/doi/10.1103/
PhysRevA.31.3761.

Heinz-Peter Breuer and Francesco Petruccione. The Theory of Open Quantum Systems. Oxford
University Press, Jan. 2007. 1SBN: 9780199213900. DOTI: |10.1093/acprof :0s0/9780199213900.
001.0001. URL: https://doi.org/10.1093/acprof:0s0/9780199213900.001.0001.

Lewis A. Williamson, Yu-Hui Chen, and Jevon J. Longdell. “Magneto-Optic Modulator with
Unit Quantum Efficiency”. In: Phys. Rev. Lett. 113 (20 Nov. 2014), p. 203601. por: 10.1103/
PhysRevLett.113.203601. URL: https://link.aps.org/doi/10.1103/PhysRevLett.113.
203601.

E Brion, L H Pedersen, and K Mglmer. “Adiabatic elimination in a lambda system”. In: Journal
of Physics A: Mathematical and Theoretical 40.5 (Jan. 2007), p. 1033. DOI: |10.1088/1751~
8113/40/5/011. URL: https://dx.doi.org/10.1088/1751-8113/40/5/011.

A. C. Faul. A concise introduction to numerical analysis. en. Boca Raton: CRC Press, Taylor &
Francis Group, 2016. 1SBN: 978-1-4987-1218-7.

Peter S. Barnett. “Theory of Microwave to Optical Photon Upconversion Using Erbium Doped
Crystals”. MA thesis. University of Otago, 2019.

Jonathan M. Kindem et al. “Characterization of Yb 3 + 171 : YVO 4 for photonic quantum
technologies”. en. In: Physical Review B 98.2 (July 2018), p. 024404. 1SSN: 2469-9950, 2469-9969.
DOI: 10.1103/PhysRevB.98.024404. URL: https://link.aps.org/doi/10.1103/PhysRevB.
98.024404 (visited on 09/11/2023).

U. Ranon. “Paramagnetic resonance of Nd3+, Dy3+, Er3+ and Yb3+ in YVO4”. In: Physics
Letters A 28.3 (1968), pp. 228-229. 1SsN: 0375-9601. DOI: https://doi . org/10.1016/
0375-9601(68) 90218~ 1. URL: https://www.sciencedirect.com/science/article/pii/
0375960168902181.

Jonathan M. Kindem et al. “Control and single-shot readout of an ion embedded in a nanopho-
tonic cavity”. en. In: Nature 580.7802 (Apr. 2020), pp. 201-204. 1SsN: 0028-0836, 1476-4687.
DOI: 10.1038/s41586-020-2160-9. URL: https://www.nature.com/articles/s41586-020-
2160-9| (visited on 09/22/2023).

M. Baur et al. “Measurement of Autler-Townes and Mollow Transitions in a Strongly Driven
Superconducting Qubit”. In: Phys. Rev. Lett. 102 (24 June 2009), p. 243602. DOI: 10.1103/
PhysRevLett.102.243602. URL: https://link.aps.org/doi/10.1103/PhysRevLett.102.
243602.

Yu-Hui Chen et al. “Optically Unstable Phase from Ion-lIon Interactions in an Erbium-Doped
Crystal”. In: Phys. Rev. Lett. 126 (11 Mar. 2021), p. 110601. DOI: 10.1103/PhysRevLett.126.
110601, URL: https://link.aps.org/doi/10.1103/PhysRevLett.126.110601.

Riku Fukumori Tian Xie and Andrei Faraon. personal communication. Jan. 23, 2024.

41

https://doi.org/10.1103/PhysRevA.31.3761
https://link.aps.org/doi/10.1103/PhysRevA.31.3761
https://link.aps.org/doi/10.1103/PhysRevA.31.3761
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1103/PhysRevLett.113.203601
https://doi.org/10.1103/PhysRevLett.113.203601
https://link.aps.org/doi/10.1103/PhysRevLett.113.203601
https://link.aps.org/doi/10.1103/PhysRevLett.113.203601
https://doi.org/10.1088/1751-8113/40/5/011
https://doi.org/10.1088/1751-8113/40/5/011
https://dx.doi.org/10.1088/1751-8113/40/5/011
https://doi.org/10.1103/PhysRevB.98.024404
https://link.aps.org/doi/10.1103/PhysRevB.98.024404
https://link.aps.org/doi/10.1103/PhysRevB.98.024404
https://doi.org/https://doi.org/10.1016/0375-9601(68)90218-1
https://doi.org/https://doi.org/10.1016/0375-9601(68)90218-1
https://www.sciencedirect.com/science/article/pii/0375960168902181
https://www.sciencedirect.com/science/article/pii/0375960168902181
https://doi.org/10.1038/s41586-020-2160-9
https://www.nature.com/articles/s41586-020-2160-9
https://www.nature.com/articles/s41586-020-2160-9
https://doi.org/10.1103/PhysRevLett.102.243602
https://doi.org/10.1103/PhysRevLett.102.243602
https://link.aps.org/doi/10.1103/PhysRevLett.102.243602
https://link.aps.org/doi/10.1103/PhysRevLett.102.243602
https://doi.org/10.1103/PhysRevLett.126.110601
https://doi.org/10.1103/PhysRevLett.126.110601
https://link.aps.org/doi/10.1103/PhysRevLett.126.110601

Appendix A

Replicating and Reverse-Engineering
Rabi Frequencies for Barnett and
Longdell 2020

[012] |P13]
100 100
0.00012
0.0015
50
5 0.00010 O
T T
= 0.00008 =
S 0 S 0 0.0010
© 0.00006
© -s0 0.00004 = _50 0.0005
/, 0.00002
-100 -100
-100 -50 0 50 100 -100 =50 0 50 100
6;1 _65;1 (MHz) 6y - (55# (MHz)
[012] |P13]
100 100
0.0012
—~ 30 0.0015 _ 50 0.0010
N N
z < 0.0008
S 0 0.0010 & 0 0.0006
| |
S S 0.0004
=50 0.0005 -50
0.0002
-100 -100
-100 -50 0 50 100 -100 =50 0 50 100
6;1 _65;1 (MHz) 6y - (55# (MHz)

Figure A.1: A replication of Figure 2 from Barnett and Longdell 2020[2], using my own implementation
of the model. The top row uses a 1 pW optical pump and 5dBm microwave drive, and the bottom
row uses a 100mW optical pump and —75dBm microwave drive.

Barnett and Longdell 2020[2] does not specify pump Rabi frequencies used, but it does give pump
powers, and pump powers P, and Rabi frequencies €, are related by

3|d|2 [2pocP,
Qp:<|h’> (;1 D (Al)

42

where A is the pump laser beam area. When replicating the paper’s results, I found that an area
corresponding to a 0.1 mm beam diameter gave good results for the high-pump data, and for the
low-pump data when using 1 pW instead of the paper’s stated 1pW, reasoning that the latter may
have been a typo. This corresponds to Rabi frequencies of approximately 35kHz and 11 MHz.

43

Appendix B

Waveguide Transducer Efficiency F'it

This is the data and fit for the input efficiency of the waveguide transduction device that is the subject
of Chapter |3 used to calibrate the optical pump power.

44

O Data ’
— = Fit (n=0.055) Pid
(@)
,/
20 - .7
rd
g 4
7/
2 15 O/
9] /
2 JRe
[e]
a o/
v 7
2 16 ,
&
] o’
= Q’/
51 g
) f

T T T T T T T
0 50 100 150 200 250 300 350 400
Input Power (UW)

Figure B.1: Plot and curve fit (efficiency n = 0.055) of waveguide power vs input power. Data in

Table

Input Power (dBm) | Waveguide Power (nW)
—8 9.703703 703703 702
—4 21.629 629 629 629 626
-5 17.7777TTTTTITT 8
—6 14.518 518 518 518 519
-7 11.851851 851851851
—8 9.629 629 629 629 63
-9 7.703703 703 703 703

—10 6.222 222222222222

—-11 4.888 888 888 888 888

—12 3.925925925 9259256
—13 3.111111111111111

—14 2.5037037037037035
—15 2.0

—16 1.592 592592 592592 3
—17 1.266 666 666 666 666 6
—18 1.007407 407 407 407 5
—19 0.8

—20 0.637 037037037037

Table B.1: Waveguide power vs input power.

45

0~ Ok W+~

LW W WK DNDNDNDNDDNDNDDN DN DN = = e e s
N — O OO0 JDU R WNFEOOWTOU kR WwNnH=O©

Appendix C

Code Listings

This appendix contains the ‘core’ model code. Full code for generating the figures in this thesis,
and the data used in those figures, can be found in the GitHub repository for this thesis https:
//github.com/Quantum-Integration-Laboratory/MariaNicolaeHonoursThesis.

C.1 Three-Level Transduction Replication

These codes are my own implementations of the prior three-level transduction models of Chapter
They were written quite early in the project, and so follow the notation of the original sources rather
than the notation in this thesis.

C.1.1 Single Cavity

This Python code replicates the single-cavity model in Reference [1]. When run as a script, it replicates
Figure 4(e) in that paper.

import numpy as np

from scipy import integrate, optimize, stats
import matplotlib.pyplot as plt

import sympy

def getL():
symbols
s12 = sympy.Matrix([[0O, 1, 0], [0, O, 0], [0, O, 011)
s13 = sympy.Matrix([[O, O, 1], [0, O, 0], [0, O, 011)
s23 = sympy.Matrix([[O, 0, 0], [0, O, 11, [0, O, 011)
s21 = s12.H
s31 = s13.H
s32 = s23.H
sll = s12%xs21
s22 = s21*s12
s33 = s31%xs13

delta_mu = sympy.symbols(’delta_mu’, real=True)

delta_s = sympy.symbols(’delta_s’, real=True)

gamma_mu = sympy.symbols(’gamma_mu’, real=True)

gamma31l, gamma32 = sympy.symbols(’gamma3(1:3)’, real=True)
gamma2d, gamma3d = sympy.symbols(’gamma(2:4)d’, real=True)
nbath = sympy.symbols(’nbath’, real=True)

Omega_mu = sympy.symbols(’Omega_mu’, complex=True)

Omega_o = sympy.symbols(’0Omega_o’, complex=True)

A = sympy.symbols(’A’, complex=True)

def master_equation_rhs(rho):
H = Omega_o*s32 + Omega_mu*s21 + Axs31
H=H+ H.H
H =H + delta_mu*xs22 + delta_s*s33

46

https://github.com/Quantum-Integration-Laboratory/MariaNicolaeHonoursThesis
https://github.com/Quantum-Integration-Laboratory/MariaNicolaeHonoursThesis

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

L21 = gamma_mu/2 * (nbath+1) * (2*sl12xrho*s21 - s22*rho - rho*s22)

L12 = gamma_mu/2 * nbath * (2*s21xrho*sl12 - sllxrho - rhox*sll)
L32 = gamma32/2 * (2%s23*rho*s32 - s33*rho - rhox*s33)

L31 = gamma31/2 * (2*s13*rho*s31 - s33*rho - rho*s33)

L22 = gamma2d/2 * (2*s22*%rho*s22 - s22*s22*%rho - rho*s22%s22)
L33 = gamma3d/2 * (2%s33*rho*s33 - s33*s33*%rho - rho*s33%s33)
loss = L21 + L12 + L32 + L31 + L22 + L33

return -sympy.I*(H*rho - rhoxH) + loss

obtain matrix representation of differential operator L
L = sympy.zeros (9)
for i in range(3):
for j in range(3):
rho = sympy.zeros (3)
rho[i,j] = 1
Lcol = master_equation_rhs (rho)
col = 3*i+]j
for ip in range(3):
for jp in range(3):
row = 3*ip+jp
Llrow,col] = Lcollip,jpl

replace first row with row computing the trace of rho
L[0,:] = sympy.Matrix([1, O, O, O, 1, 0, 0, 0, 11).T

lambdify

args = (delta_mu, delta_s, gamma_mu, gamma3l, gamma32, gamma2d, gamma3d,

Omega_mu, Omega_o, A)
Lfunc = sympy.lambdify(args, L, ’numpy’)

return L, Lfunc
L, Lfunc = getL()

fundamental constants
hbar = 1.05457e-34

kB = 1.380649e-23

c = 299792458

epsO = 8.854187817e-12
mu0 = 4*np.pi*le-7

muB = 9.274009994e-24

def rho_steady_state_many_args(delta_mu, delta_s, gamma_mu, gamma3l, gamma32,

gamma2d, gamma3d, nbath, Omega_mu, Omega_o, A):

Lmatrix = Lfunc(
delta_mu=delta_mu,
delta_s=delta_s,
gamma_mu=gamma_mu,
gamma3l=gamma31l,
gamma32=gamma32,
gamma2d=gamma2d,
gamma3d=gamma3d ,
nbath=nbath,
Omega_mu=0mega_mu,
Omega_o=0mega_o,
A=A

np.array([1, O, O, O, O, O, O, O, 0])
= np.linalg.solve(Lmatrix, b)

rho = np.array ([[x[0], x[1], x[2]],
[x[3], x[41, x[511,
[x[6]1, x[71, x[8111)

M O~
]

return rho

def Omega_mu_from_Pin(Pin, omega_mu):

47

nbath,

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148

149
150
151
152
153
154
155
156
157
158
159
160

V_mu_cavity = Vsample / fill_factor

Pmu = 1e-3 * 10**(Pin/10)

Q = omega_mu / (kappa_mi + 2xkappa_mc)

S21 = 4 * kappa_mc**2 / (kappa_mi + 2*kappa_mc) **2
energy_mu_cavity = 2*Pmux*Q*np.sqrt(S21) / omega_mu
Bmu = np.sqrt(muO*energy_mu_cavity / (2*V_mu_cavity))
return -mul2*Bmu / hbar

def Omega_o_from_Pin(Pin, omega_o):
Po = 1e-3 * 10**x(Pin/10)
pflux = Po / (hbar*omega_o)
n_in = 4*xpflux*kappa_oc / (kappa_oc+kappa_oi)**2
Sspot = np.pi * Wocx*x*2
V_o_cavity = (Sspot*Loc + Sspot*Lsample*nYSO0**3) / 2
Eo = np.sqrt(n_in*hbar*omega_o / (2%epsO*xV_o_cavity))
return -d23*Eo / hbar

def rho_steady_state(Pin_mu, Pin_o, delta_mu, delta_o, a):
omega_mu = omega_12 - delta_mu
nbath = 1 / (np.exp(hbar*(omega_mu)/(kB*T))-1)
rho = rho_steady_state_many_args(
delta_mu = delta_mu,
delta_s = delta_o - delta_mu,
gamma_mu = 1/tau2 * 1/(nbath+1),

gamma3l = 1/tau3 * d13**2 / (d13*x2 + d23x**2),

gamma32 = 1/tau3 * d23**2 / (d13*x2 + d23%*x*2),

gamma2d = 1le6,

gamma3d = 1le6,

nbath = nbath,

Omega_mu = Omega_mu_from_Pin(Pin_mu, omega_12 - delta_mu),
Omega_o = Omega_o_from_Pin(Pin_o, omega_23 - delta_o),

A = gxa

)

return rho

def rhol3_steady_state_ensemble(Pin_mu, Pin_o, mean_delta_mu, mean_delta_s, a):

standard_norm = lambda z: np.exp(-z**2/2) / np.sqrt(2*np.pi)
zrange = 3

def ensemble_integrand(z_mu, z_s):

delta_mu = mean_delta_mu + wl2*z_mu
delta_s = mean_delta_mu + wl3*z_s
envelope = standard_norm(z_mu)*standard_norm(z_s) / (wl12*w13)

rhol3 = rho_steady_state(Pin_mu, Pin_o, delta_mu, delta_s, a)l[O0,

jacobian = w12 * wi3
return envelope * rhol3 * jacobian

real_integrand = lambda z_mu, z_s: np.real(ensemble_integrand(z_mu,
imag_integrand = lambda z_mu, z_s: np.imag(ensemble_integrand(z_mu,
y_re, abserr_re = integrate.dblquad(real_integrand, -zrange, zrange,
zrange)
y_im, abserr_im = integrate.dblquad(imag_integrand, -zrange, zrange,
zrange)

y = y_re + 1j*y_im
return y

def steady_a(Pin_mu, Pin_o, delta_oc, rescaling=1):
def S13(a):
return N*g*rhol3_steady_state_ensemble(Pin_mu, Pin_o, 0, 0, a)

def ffunc(a):
return -1j*delta_oc*a - 1j*S13(a) - (kappa_oit+kappa_oc)*a/2

def ffunc_R2toR2(a):
[a_re, a_im] = a

48

2]

z_s))
z_s))

-zrange,

-zrange,

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

if

a = a_re + lj*xa_im

fa = ffunc(a)

fa *= rescaling

return [np.real(fa), np.imag(fa)]

result = optimize.root(ffunc_R2toR2, [0, 0])
[a_re, a_im] = result.x
return a_re + 1lj*a_im, result

name == main l

recreate Figure jJc from Fernandez—Gonzalvo et. al. 2019

(Phys. Rev. A 100, 083807)

nYS0 = 1.76 # refractive index of YSO
T = 4.6 # experiment temperature

N 1.28el15 # erbium number density

g 51.9 # s183 to optical coupling

omega_12 = 2*np.pi*x5.186e9

omega_23 = 2%np.pi*195113.36e9 # 1536.504 nm
wl2 = 2*np.pi*25e6

wl3 = 2%np.pi*170e6

mul2 = 4.3803*muB

di3 1.63e-32

d23 = 1.15e-32

tau2 = 1le-3

tau3 = 11e-3

kappa_mi = 2*np.pi*650e3
kappa_mc = 2*np.pi*70e3
kappa_oi = 2%np.pi*1.7e6
kappa_oc = 2*np.pi*7.95e6

Woc = 0.6e-3
Loc = 49.5e-3

fill_factor = 0.8 # fraction of microwave cavity filled by sample

dsample = b5e-3

Lsample = 12e-3

Vsample = np.pi * dsample**2 * Lsample / 4
Pin_mu = 0

Pin_o = 10.4135
a, _ = steady_a(-20, Pin_o, 0, rescaling=1e-6)

delta_mu_v = 30e6 * np.linspace(-2%np.pi, 2*np.pi,
delta_o_v = 50e6 * np.linspace(-2*np.pi, 2*np.pi,

delta_mu, delta_o = np.meshgrid(delta_mu_v, delta_

101) /

(2*np.pi)

101) / (2*np.pi)

o_v)

def steady_pop(Pin_mu, Pin_o, delta_mu, delta_o, a):

rho = rho_steady_state(Pin_mu, Pin_o, delta_mu,

return np.real(np.diag(rho))

sig = 0,0,0,0,0->@)’

pop = np.vectorize(steady_pop, signature=sig) (-20,
pil = popl:,:,0]

p33 = popl:,:,2]

mhz = 1e6

fig, ax = plt.subplots(l, 1)
ax.pcolormesh(delta_o/mhz, delta_mu/mhz, pl1-p33,
ax.invert_yaxis ()

ax.set_aspect (’equal’)

ax.set_title(’rholl - rho33 (Mine)’)

49

Pin_o,

vmin=0,

delta_o, a)

delta_mu,

vmax=0.05)

delta_o,

a)

227
228
229

0~ Tk W

QU O O OU OU O U i i b b B b b B s B W0 W0 W W W W WwwWwWwWwhNNDNDNDNDNDDNDNDN P = ==
DU WP O OO UR WNRFRF OO UERE WN R, OO U R WP O OO0tk W~ OO

ax.set_xlabel(’delta_o (rad MHz)’)
ax.set_ylabel(’delta_mu (rad MHz)’)
plt.show ()

C.1.2 Double Cavity

This Python code replicates the double-cavity model in Reference [2]. It is ‘library’ code that is not
a script in its own right. The GitHub repository contains scripts that import this code.

import numpy as np

import matplotlib.pyplot as plt

from scipy import integrate, optimize, stats
import sympy

import pickle

import itertools

gauss_lobatto_n 20

legendre_coeffs = (0,)*(gauss_lobatto_n-1) + (1,)

roots = np.polynomial.legendre.Legendre(legendre_coeffs).deriv().roots ()
gauss_lobatto_points = np.concatenate([[-1], roots, [1]1]1)
gauss_lobatto_points = (gauss_lobatto_points+1l) / 2

k = np.arange (gauss_lobatto_n)

i, j = np.indices((gauss_lobatto_n, gauss_lobatto_n))

M = gauss_lobatto_points[j]l*x*i

b = 1/(k+1)

gauss_lobatto_weights = np.linalg.solve(M, Db)

flattening and unflattening arrays

unravel = np.array ([
[o, 3, 6],
(1, 4, 71,
(2, 5, 8]

D

ravel_i = np.zeros (9, dtype=int)
ravel_j = np.zeros(9, dtype=int)
for i in range(3):
for j in range(3):
k = unravell[i,j]
ravel_il[k] = i
ravel_j[k] = j
ravel = (ravel_i, ravel_j)

def get_symbolic():

parameters
g_o = sympy.symbols(’g_o’, real=True)
g_mu = sympy.symbols(’g_mu’, real=True)
Omega = sympy.symbols(’0Omega’)
alpha = sympy.symbols(’alpha’)
beta = sympy.symbols(’beta’)
delta_mu = sympy.symbols(’delta_mu’, real=True)
delta_o = sympy.symbols(’delta_o’, real=True)
delta_amu = sympy.symbols(’delta_amu’, real=True)
delta_ao = sympy.symbols(’delta_ao’, real=True)
gamma_12 = sympy.symbols(’gamma_12’, real=True)
gamma_13 = sympy.symbols(’gamma_13’, real=True)
gamma_23 = sympy.symbols(’gamma_23’, real=True)
gamma_2d = sympy.symbols(’gamma_2d’, real=True)
gamma_3d = sympy.symbols(’gamma_3d’, real=True)
n_bath = sympy.symbols(’n_bath’, real=True)
symbols = {

’g_o’: g_o,

’g_mu’: g_mu,

50

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

85
86
87
88
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

’Omega’: Omega,
’alpha’: alpha,
’beta’: beta,

’delta_mu’: delta_mu,
’delta_o’: delta_o,
’delta_amu’: delta_amu,
’delta_ao’: delta_ao,
’gamma_12’: gamma_12,
’gamma_13’: gamma_13,
’gamma_23’: gamma_23,
’gamma_2d’: gamma_2d,

’gamma_3d’: gamma_3d,
’n_bath’: n_bath
}

matriz symbols

s12 = sympy.Matrix([[0, 1, 0], [0, O, 0], [0, O, 011)
s13 = sympy.Matrix([[O, O, 1], [0, o, 0], [0, O, 011)
s23 = sympy.Matrix([[O, 0, 0], [0, O, 11, [0, O, 011)

s21 = s12.H
s31 = s13.H
s32 = s23.H
sll = s12xs21
s22 = s21*s12
s33 = s31%s13

Hamiltonian

H_O0 = (delta_amu-delta_mu)*s22 + (delta_ao-delta_o
Omega.conjugate () *xs23

H_alpha = g_o*s31

H_alpha_c = g_oxsl3

H_beta = g_mu*s21

H_beta_c = g_muxsl2

)*s33 + Omega*s32 +

H = H.O + alpha*H_alpha + alpha.conjugate()*H_alpha_c + beta*H_beta +

beta.conjugate () *H_beta_c

loss superoperator

def loss_superoperator (rho):
L21 gamma_12/2 * (n_bath+1) * (2*xsl12*rho*s21
L12 = gamma_12/2
L32 = gamma_23/2
L31 = gamma_13/2
L22 = gamma_2d/2
L33 = gamma_3d/2
loss = L21 + L12
return loss

(2*s23*rho*s32 - s33*rho -
(2*s13*rho*s31 - s33*rho -
(2*s22*rho*s22 - s22*rho -
(2xs33*rho*s33 - s33*rho -
L32 + L31 + L22 + L33

+ ¥ ¥ * * %

get liouvillan superoperator matrix
def liouvillan_matrix(H, loss=None):
def master_equation(rho):
master_operator = -sympy.Il * (H*rho-rhox*H)
if loss is not None:
master_operator += loss(rho)
return master_operator

L = sympy.zeros (9)

- s22*rho - rho*s22)

n_bath * (2*xs21*rho*sl12 - sll*rho - rhoxsil)

rho*xs33)
rho*xs33)
rho*xs22)
rho*xs33)

for column, (icol, jcol) in enumerate(zip (*ravel)):

basis matriz
rho = sympy.zeros (3)
rho[icol, jcol]l = 1

get column of supermatrix
L_column = master_equation(rho)

for row, (irow, jrow) in enumerate(zip (xravel)):

L[row,column] = L_column[irow, jrow]

o1

121 return L

122

123 L_0 = liouvillan_matrix(H_0O, loss=loss_superoperator)

124 L_alpha = liouvillan_matrix(H_alpha)

125 L_alpha_c = liouvillan_matrix(H_alpha_c)

126 L_beta = liouvillan_matrix(H_beta)

127 L_beta_c = liouvillan_matrix(H_beta_c)

128 L = L_O + alpha*L_alpha + alpha.conjugate()*L_alpha_c + beta*L_beta +
beta.conjugate () *L_beta_c

129

130 return {

131 ’symbols’: symbols,

132 ’H’: H,

133 ’L’: L,

134 ’L_0’: L_O,

135 ’L_alpha’: L_alpha,

136 ’L_alpha_c’: L_alpha_c,

137 ’L_beta’: L_beta,

138 ’L_beta_c’: L_beta_c

139 }

140

141 | symbolic = get_symbolic ()

142

143 | symbolic_args_full = (

144 symbolic [’symbols’][’g_o’],

145 symbolic[’symbols’][’g_mu’],

146 symbolic[’symbols’][’0Omega’],

147 symbolic[’symbols’] [’gamma_12°],

148 symbolic[’symbols’][’gamma_13°],

149 symbolic[’symbols’][’gamma_23"],

150 symbolic[’symbols’][’gamma_2d°],

151 symbolic[’symbols’][’gamma_3d’],

152 symbolic[’symbols’][’n_bath’],

153 symbolic[’symbols’][’delta_mu’],

154 symbolic [’symbols’][’delta_o’],

155 symbolic[’symbols’][’delta_amu’],

156 symbolic [’symbols’][’delta_ao’],

157 symbolic [’symbols’][’alpha’],

158 symbolic[’symbols’][’beta’]

159)

160

161 | symbolic_args_0 = (

162 symbolic [’symbols’][’g_o’],

163 symbolic[’symbols’][’g_mu’],

164 symbolic[’symbols’][’0Omega’],

165 symbolic[’symbols’] [’gamma_12°],

166 symbolic[’symbols’][’gamma_13°],

167 symbolic [’symbols’][’gamma_23°],

168 symbolic[’symbols’] [’gamma_2d°],

169 symbolic[’symbols’][’gamma_3d°’],

170 symbolic [’symbols’][’n_bath’],

171 symbolic[’symbols’] [’delta_mu’],

172 symbolic[’symbols’][’delta_o’],

173 symbolic[’symbols’][’delta_amu’],

174 symbolic [’symbols’][’delta_ao’]

175)

176

177 | symbolic_args_H = (

178 symbolic[’symbols’][’g_o0’],

179 symbolic [’symbols’][’g_mu’],

180 symbolic[’symbols’] [’0Omega’],

181 symbolic[’symbols’][’delta_mu’],

182 symbolic [’symbols’][’delta_o’],

183 symbolic[’symbols’][’delta_amu’],

184 symbolic[’symbols’][’delta_ao’],

185 symbolic[’symbols’][’alpha’],

52

186
187
188
189
190
191
192
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

o

H
L
L_
L_
L_

symbolic [’ symbols’] [’beta’]

sympy .lambdify (symbolic_args_H, symbolic[’H’], ’numpy’)
sympy .lambdify (symbolic_args_full, symbolic[’L’], ’numpy’)
= sympy.lambdify (symbolic_args_0, symbolic[’L_0’], ’numpy’)

alpha = sympy.lambdify(symbolic[’symbols’][’g_o’], symbolic[’L_alpha’],
alpha_c = sympy.lambdify(symbolic[’symbols’][’g_o’], symbolic[’L_alpha_c’],
’numpy ’)

L_beta = sympy.lambdify(symbolic[’symbols’][’g_mu’], symbolic[’L_beta’],
L_beta_c = sympy.lambdify(symbolic[’symbols’][’g_mu’], symbolic[’L_beta_c’], ’numpy’)

def

def

rho_steady_state(g_o, g_mu, Omega, gamma_12, gamma_13,
gamma_23, gamma_2d, gamma_3d, n_bath,
delta_mu, delta_o, delta_amu, delta_ao, alpha, beta)
L_matrix = L(
g_o=g_o,
g_mu=g_mu,
Omega=0mega,
gamma_12=gamma_12,
gamma_13=gamma_13,
gamma_23=gamma_23,
gamma_2d=gamma_2d,
gamma_3d=gamma_3d,
n_bath=n_bath,
delta_mu=delta_mu,
delta_o=delta_o,
delta_amu=delta_amu,
delta_ao=delta_ao,
alpha=alpha,
beta=beta
)
L_matrix[0,:] = np.array([1, O, O, O, 1, O, O, O, 11)
b = np.array([1, O, O, O, O, O, O, 0, 0])
rho = np.linalg.solve(L_matrix, b)
return rho[unravell]

rho_steady_state_ensemble(g_o, g_mu, Omega, gamma_12, gamma_13,
gamma_23, gamma_2d, gamma_3d, n_bath,
delta_mu, delta_o, delta_amu, delta_ao,
sigma_mu, sigma_o, alpha, beta):
degenerate dressed state detuning
def minor_det(M, i, j):
return M[i,i]1*M[j,j] - M[i,jI*M[j,1i]

def H_disc(delta_amu, delta_ao):

H_matrix = H(
g_mu=g_mu,
g-0=g_o,
Omega=0mega,
alpha=alpha,
beta=beta,
delta_mu=delta_mu,
delta_o=delta_o,
delta_amu=delta_amu,
delta_ao=delta_ao

= -1
np.trace (H_matrix)
= -(minor_det (H_matrix, 0, 1)

+ minor_det (H_matrix, 0, 2)

+ minor_det (H_matrix, 1, 2))
d = np.linalg.det(H_matrix)
Delta = 18*%axbxc*xd - 4xb**x3xd + bxbxckxc - 4*xa*c**3 - 27*xakxaxd*d
return np.abs(Delta)

O T P~
]

93

’numpy ’)

’numpy’)

251 def delta_amu_degenerate(delta_ao):

252 # get close guess

253 if delta_ao == delta_o:

254 delta_amuO0 = delta_mu

255 elif np.abs(beta) < np.abs(Omega):

256 delta_amuO = -np.abs(Omega)**2/(delta_ao-delta_o) + delta_ao - delta_o +
delta_mu

257 else:

258 delta_amuO = np.abs(g_mu*beta)**2/(delta_ao-delta_o) + delta_mu

259

260 f = lambda d_amu: H_disc(d_amu, delta_ao)

261 result = optimize.minimize_scalar(f, bracket=(delta_amuO-sigma_mu,
delta_amuO+sigma_mu))

262 return result.x

263

264 # gauss—lobatto integration

265 def gauss_lobatto_nodes_weights(a, b):

266 nodes = a + gauss_lobatto_pointsx*(b-a)

267 weights = gauss_lobatto_weights*(b-a)

268 return nodes, weights

269

270 def composite_gauss_lobatto_nodes_weights (bounds):

271 bounds = np.sort(bounds)

272 nodes = np.array([], dtype=float)

273 weights = np.array([], dtype=float)

274 for a, b in zip(bounds[:-1], bounds[1:]):

275 new_nodes , new_weights = gauss_lobatto_nodes_weights(a, b)

276 nodes = np.concatenate ([nodes, new_nodes])

277 weights = np.concatenate ([weights, new_weights])

278 return nodes, weights

279

280 # rho helper

281 def rho_fewer_args(d_ao, d_amu):

282 return rho_steady_state(

283 g_o=g_o,

284 g_mu=g_mu,

285 Omega=0Omega,

286 gamma_12=gamma_12,

287 gamma_13=gamma_13,

288 gamma_23=gamma_23,

289 gamma_2d=gamma_2d,

290 gamma_3d=gamma_3d,

291 n_bath=n_bath,

292 delta_mu=delta_mu,

293 delta_o=delta_o,

294 delta_amu=d_amu,

295 delta_ao=d_ao,

296 alpha=alpha,

297 beta=beta

298)

299

300 # generate outer integral nodes and weights

301 bounds = [

302 delta_ao,

303 delta_ao - sigma_o,

304 delta_ao + sigma_o,

305 delta_ao - 3*sigma_o,

306 delta_ao + 3*sigma_o,

307 delta_ao - 10*sigma_o,

308 delta_ao + 10*sigma_o,

309 delta_o,

310 delta_o - gamma_3d,

311 delta_o + gamma_3d,

312 delta_o - b*xgamma_3d,

313 delta_o + b*xgamma_3d

314 1

54

315 d_ao_nodes, d_ao_weights = composite_gauss_lobatto_nodes_weights (bounds)

316

317 # outer integral envelope function

318 z_ao_nodes = (d_ao_nodes-delta_ao) / sigma_o

319 G_ao_nodes = stats.norm.pdf(z_ao_nodes) / sigma_o

320

321 # perform integrals

322 rho_integral = np.zeros((3, 3), dtype=complex)

323 for d_ao, d_ao_w, G_ao in zip(d_ao_nodes, d_ao_weights, G_ao_nodes):

324 # generate inner integral nodes and weights

325 bounds = [

326 delta_amu,

327 delta_amu - sigma_mu,

328 delta_amu + sigma_mu,

329 delta_amu - 3*sigma_mu,

330 delta_amu + 3*sigma_mu,

331 delta_amu - 10*sigma_mu,

332 delta_amu + 10*sigma_mu,

333 delta_mu,

334 delta_mu - gamma_2d,

335 delta_mu + gamma_2d,

336 delta_mu - b5*gamma_2d,

337 delta_mu + 5*gamma_2d4d,

338 delta_amu_degenerate (d_ao)

339]

340 d_amu_nodes, d_amu_weights = composite_gauss_lobatto_nodes_weights (bounds)

341

342 # inner integral envelope function

343 z_amu_nodes = (d_amu_nodes-delta_amu) / sigma_mu

344 G_amu_nodes = stats.norm.pdf (z_amu_nodes) / sigma_mu

345

346 # perform inner integral

347 for d_amu, d_amu_w, G_amu in zip(d_amu_nodes, d_amu_weights, G_amu_nodes):

348 rho = rho_fewer_args(d_ao, d_amu)

349 rho_integral += G_ao * G_amu * rho * d_ao_w * d_amu_w

350

351 return rho_integral

352

353 |def alpha_beta_langevin_differential(N_o, N_mu, g_o, g_mu, Omega, gamma_12, gamma_13,

354 gamma_23, gamma_2d, gamma_3d, gamma_muc,
gamma_mui ,

355 gamma_oc, gamma_oi, n_bath, delta_mu, delta_o,
delta_amu,

356 delta_ao, sigma_mu, sigma_o, alpha, beta,
alpha_in, beta_in,

357 use_rho_ji=True):

358 rho_steady = rho_steady_state_ensemble (

359 g_o=g_o,

360 g_mu=g_mu,

361 Omega=0Omega,

362 gamma_1l2=gamma_12,

363 gamma_13=gamma_13,

364 gamma_23=gamma_23,

365 gamma_2d=gamma_2d,

366 gamma_3d=gamma_3d,

367 n_bath=n_bath,

368 delta_mu=delta_mu,

369 delta_o=delta_o,

370 delta_amu=delta_amu,

371 delta_ao=delta_ao,

372 sigma_mu=sigma_mu,

373 sigma_o=sigma_o,

374 alpha=alpha,

375 beta=beta

376)

377 S12 = N_mu * g_mu * (rho_steady[1,0] if use_rho_ji else rho_steady[0,1])

95

378
379

380

381
382
383
384
385
386

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

S13 = N_o * g_o * (rho_steady[2,0] if use_rho_ji else rho_steady[0,2])
alpha_diff = 1j*delta_o*alpha - 1j*S13 - (gamma_oc+gamma_oi)*alpha/2 +
np.sqrt (gamma_oc)*alpha_in

beta_diff = 1j*delta_mux*beta - 1j*S12 - (gamma_muc+gamma_mui)*beta/2 +
np.sqrt (gamma_muc)*beta_in

return alpha_diff, beta_diff

def alpha_beta_steady_state(N_o, N_mu, g_o, g_mu, Omega, gamma_12, gamma_13,

gamma_23, gamma_2d, gamma_3d, gamma_muc, gamma_mui,
gamma_oc, gamma_oi, n_bath, delta_mu, delta_o, delta_amu,
delta_ao, sigma_mu, sigma_o, alpha_in, beta_in,
use_rho_ji=True):
def root_function(alpha_beta_vec):
alpha_r = alpha_beta_vec [0]
alpha_i = alpha_beta_vec[1]
beta_r = alpha_beta_vec [2]
beta_i = alpha_beta_vec [3]
alpha = alpha_r + 1j*alpha_i
beta = beta_r + 1jxbeta_i
alpha_res, beta_res = alpha_beta_langevin_differential(
N_o=N_o,
N_mu=N_mu,
g_o=g_o,
g_mu=g_mu,
Omega=0mega,
gamma_12=gamma_12,
gamma_13=gamma_13,
gamma_23=gamma_23,
gamma_2d=gamma_2d,
gamma_3d=gamma_3d,
gamma_muc=gamma_muc ,
gamma_mui=gamma_mui,
gamma_oc=gamma_oc ,
gamma_oi=gamma_oi,
n_bath=n_bath,
delta_mu=delta_mu,
delta_o=delta_o,
delta_amu=delta_amu,
delta_ao=delta_ao,
sigma_mu=sigma_mu,
sigma_o=sigma_o,
alpha=alpha,
beta=beta,
alpha_in=alpha_in,
beta_in=beta_in,
use_rho_ji=use_rho_ji
)
alpha_beta_res_vec = np.zeros (4, dtype=float)
alpha_beta_res_vec [0] = np.real(alpha_res)
alpha_beta_res_vec[1] = np.imag(alpha_res)
alpha_beta_res_vec[2] = np.real(beta_res)
alpha_beta_res_vec [3] np.imag(beta_res)
return alpha_beta_res_vec

initial guess for root—finding; root for zero atomic interaction
alpha_0 = alpha_in*np.sqrt(gamma_oc) / ((gamma_oi+gamma_oc)/2 - 1j*delta_o)
beta_0 = beta_in*np.sqrt(gamma_muc) / ((gamma_mui+gamma_muc)/2 - 1j*delta_mu)

perform root finding

x0 = np.zeros (4, dtype=float)

x0[0] = np.real(alpha_0)

x0[1] = np.imag(alpha_0)

x0[2] = np.real(beta_0)

x0[3] = np.imag(beta_0)

result = optimize.root(root_function, x0=x0, tol=1e-12)

o6

441
442
443
444
445
446
447
448
449

0O Tk W

R R R R R W W W W W W WWWWNNNDNDDNDNDNDNDNLDLN = e
T WIN R O OO UERE WNHFHF OO Uk WNFE O OO0 Utk W~ O©

restore result to compler numbers
alpha_r = result.x[0]

alpha_i = result.x[1]

beta_r = result.x[2]

beta_i = result.x[3]

alpha = alpha_r + 1j*alpha_i

beta = beta_r + 1jxbeta_i

return (alpha, beta), result

C.2 Four-Level Transduction

This Python code implements the four-level transduction model in Chapter When imported into
a Python script, it expects to be able to save and load a file into a directory called result-cache.
When run as a script, it does the aforementioned saving and loading and nothing else. The notation in
this code differs from that in this thesis, mainly in that the 23, 13, 24, and 14 transitions are labelled
A, B, D, and FE respectively. Additionally, ¢, is instead called 6.

import numpy as np

from scipy import signal
import sympy

import pickle

import os

fundamental constants

hbar = 1.054571817e-34
kB = 1.380649e-23

flattening and unflattening of density matrices

unflatten = np.array ([
to, 1, 2, 3],
[4, 5, 6, 71,
(e, 9, 10, 111,
(12, 13, 14, 15]

D

flatten_i = np.zeros (16, dtype=int)
flatten_j = np.zeros(16, dtype=int)
for i in range(4):
for j in range(4):
k = unflatten[i,j]
flatten_i[k] = i
flatten_j[k] = j
flatten = (flatten_i, flatten_j)

computer algebra for Liouvillan matriz

si1 = sympy.Matrix([[1,0,0,0],(0,0,0,0],[0,0,0,0],[0,0,0,011)
s12 = sympy.Matrix([[0O,1,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,01])
s13 = sympy.Matrix([[0,0,1,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]11)
s14 = sympy.Matrix([[0,0,0,1],(0,0,0,0],([0,0,0,0],[0,0,0,011)
s21 = s12.T

s31 = s13.T

s41 = s14.T

s22 = s21%*s12

s23 = s21%*s13

s24 = s21xs14

s32 = s23.T

s42 = s24.T

s33 = s31%*s13

s34 = s31xs14

o7

46 | s43 = s34.T
47 | s44 s43%s34
48
49 |omegal2 = sympy.symbols(’omega_12’, real=True)
50 | delta_B sympy .symbols (’delta_B’, real=True)
51 |delta_mu = sympy.symbols(’delta_mu’, real=True)
52 | Omega_mu = sympy.symbols(’Omega_mu’)

53 | Omega_A = sympy.symbols(’0Omega_A’)

54 | Omega_B = sympy.symbols (’0Omega_B’)

55 | Omega_D = sympy.symbols(’0Omega_D’)

56 | Omega_E sympy . symbols (’Omega_E’)

57
58 | gammal2, gammal3, gammal4 = sympy.symbols(’gamma_1(2:5)°’, real=True)
59 | gamma23, gamma24 = sympy.symbols(’gamma_2(3:5)’, real=True)

60 | gamma34 = sympy.symbols(’gamma_34’, real=True)

61 | gamma2d, gamma3d, gamma4d = sympy.symbols(’gamma_(2:5)d’, real=True)
62 |nbath_12 = sympy.symbols(’n_12’, real=True)

63 |nbath_34 = sympy.symbols(’n_34’, real=True)

64
65 |H = Omega_A*s32 + Omega_B*s31 + Omega_D*s42 + Omega_E*s41 + Omega_mux*sé43
66 |H += H.H

67 |H += omegal2*s22 + delta_B*s33 + (delta_B+delta_mu)*s44

68
69 | def loss_superoperator (rho):

70 L12 = gammal2*(nbath_12+1)/2 * (2*xsl12*rho*s21 - s22*rho - rhoxs22)
71 L21 = gammal2*nbath_12/2 * (2*s21*rho*sl12 - sll*rho - rhox*sl1)

72 L13 = gammal3/2 * (2*s13*rho*s31 - s33*rho - rho#*s33)

73 L14 = gammal4/2 * (2*sl4xrho*s4l - sd44xrho - rhox*s44)

74 L23 = gamma23/2 * (2*s23*rho*s32 - s33*rho - rho*s33)

75 L24 = gamma24/2 * (2*s24*rhoxs42 - s44*rho - rhox*s44)

76 L34 = gamma34*(nbath_34+1)/2 * (2*xs34*rho*s43 - s44*rho - rhoxs44)
77 L43 = gamma34*nbath_34/2 * (2*s43*xrho*s34 - s33*rho - rho*s33)

78 L2d = gamma2d/2 * (2%s22*rho*s22 - s22%rho - rho*s22)

79 L3d = gamma3d/2 * (2%s33*rho*s33 - s33*rho - rho*s33)

80 L4d = gamma4d/2 * (2*sd44xrho*s44 - sddxrho - rhox*s4d4d)

81 return L12 + L21 + L13 + L14 + L23 + L24 + L34 + L43 + L2d + L3d + L4d
82

83 | def liouvillan_superoperator (rho):

84 return -sympy.I*(H*rho-rho*H) + loss_superoperator (rho)

85

86 |# construct Liouvillan matrix
87 |L = sympy.zeros (16)
88 | for column, (icol, jcol) in enumerate(zip (xflatten)):

89 # basis matriz

90 rho = sympy.zeros (4)

91 rho[icol, jcol]l = 1

92

93 # get column of supermatriz

94 L_column = liouvillan_superoperator (rho)

95 for row, (irow, jrow) in enumerate(zip (xflatten)):
96 L[row,column] = L_column[irow, jrowl]

97

98 |# matriz to convert compler Hermitian to real monsymmetric
99 |C = sympy.zeros (16)
100 | for k in range(4):

101 ik = unflattenl[k,k]

102 Clik,ik] = 1

103 | for j in range(3):

104 for k in range(j+1, 4):

105 ij = unflatten([j,k]

106 ik = unflatten [k, j]

107 C[ij,ij] = sympy.Rational(1l, 2)
108 C[ij,ik] = sympy.Rational(l, 2)
109 Clik,ij] = -sympy.I/2

110 Clik,ik] = sympy.I/2

111

o8

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

Liouvillan matrix converted to real
C_inv = C.inv ()
Lreal = sympy.re(C*Lx*C.inv())

lambdified functions
def short_lambdify(params, expr):
return sympy.lambdify(params, expr, ’numpy’, cse=True, docstring_limit=0)

Hsymbols = (omegal2, delta_B, delta_mu, Omega_mu,
Omega_A, Omega_B, Omega_D, Omega_E)
Hsymbols + (gammal2, gammal3, gammal4, gamma23, gamma24, gamma34,
gamma2d , gamma3d, gamma4d, nbath_12, nbath_34)
Hfunc = short_lambdify (Hsymbols, H)
Lrealfunc = short_lambdify(Lsymbols, Lreal)

Lsymbols

gross hack to get numerical matrices from sympy
X = sympy.symbols(’x’)

complex_to_real = short_lambdify(x, C) (None)
real_to_complex = short_lambdify(x, C_inv) (Nomne)

discriminant symbolic and lambdified functions for numerical methods

def expr_to_poly_coeffs (expr, x):
poly = sympy.poly(expr, x)
n = poly.degree(x)
coeffs = sympy.zeros(n+1l, 1)
for (k,), coeff in zip(poly.monoms (), poly.coeffs()):
coeffs[k] = coeff
return coeffs

def diff_poly_coeffs(coeffs):
n = coeffs.shape[0]-1
diff_coeffs = sympy.zeros(mn, 1)
for k in range(l, n+1):
diff_coeffs[k-1,0] = sympy.Integer (k)*coeffsl[k,0]
return diff_coeffs

restore the symbolic expressions from a cache, if it exists

fname = ’result-cache/Delta_expr.pkl’
if os.path.isfile(fname):
with open(fname, ’rb’) as f:

Delta_expr = pickle.load(f)
Delta = Delta_expr[’Delta’]
Delta_coeffs_delta_B = Delta_expr[’Delta_coeffs_delta_B’]
Delta_coeffs_delta_mu = Delta_expr[’Delta_coeffs_delta_mu’]
dmu_Delta = Delta_expr[’dmu_Delta’]
dmu_Delta_coeffs_delta_B = Delta_expr[’dmu_Delta_coeffs_delta_B’]
dmu_Delta_coeffs_delta_mu = Delta_expr[’dmu_Delta_coeffs_delta_mu’]
dB_Delta = Delta_expr[’dB_Delta’]
dB_Delta_coeffs_delta_B = Delta_expr[’dB_Delta_coeffs_delta_B’]
dB_Delta_coeffs_delta_mu = Delta_expr[’dB_Delta_coeffs_delta_mu’]
d2mu_Delta = Delta_expr[’d2mu_Delta’]
d2B_Delta = Delta_expr[’d2B_Delta’]
else:

compute the discriminant Delta of the characteristic polynomial

of the Hamiltonian; this slightly convoluted method of wusing

a generic quartic is faster than the obvious way

print (’Computing the symbolic polynomial coefficients of the discriminant’)

print (’This takes about 20 minutes on my machine, so get ready to wait’)

print (f’The result will be saved as {fname} to be re-used in future builds’)

a = [a0, al, a2, a3, a4] = sympy.symbols(’a_(0:5)’, real=True)

x = sympy.symbols(’x’, real=True)

poly = sympy.poly(ad*x**x4 + a3xx**3 + al2*x*x*2 + al*x + a0, x)

Delta = poly.discriminant ()

charpoly = H.charpoly()

for (k,), coeff in zip(charpoly.monoms (), charpoly.coeffs()):

99

178 Delta = Delta.subs(alk], coeff)

179

180 # compute various polynomial coefficients and derivatives of Delta
181 Delta_coeffs_delta_B = expr_to_poly_coeffs(Delta, delta_B)

182 Delta_coeffs_delta_mu = expr_to_poly_coeffs(Delta, delta_mu)

183 dmu_Delta = sympy.diff (Delta, delta_mu)

184 dmu_Delta_coeffs_delta_B = sympy.diff (Delta_coeffs_delta_B, delta_mu)
185 dmu_Delta_coeffs_delta_mu = diff_poly_coeffs(Delta_coeffs_delta_mu)
186 dB_Delta = sympy.diff (Delta, delta_B)

187 dB_Delta_coeffs_delta_B = diff_poly_coeffs(Delta_coeffs_delta_B)
188 dB_Delta_coeffs_delta_mu = sympy.diff (Delta_coeffs_delta_mu, delta_B)
189 d2mu_Delta = sympy.diff(Delta, delta_mu, 2)

190 d2B_Delta = sympy.diff (Delta, delta_B, 2)

191 Delta_expr = {

192 ’Delta’: Delta,

193 ’Delta_coeffs_delta_B’: Delta_coeffs_delta_B,

194 ’Delta_coeffs_delta_mu’: Delta_coeffs_delta_mu,

195 ’dmu_Delta’: dmu_Delta,

196 ’dmu_Delta_coeffs_delta_B’: dmu_Delta_coeffs_delta_B,

197 ’dmu_Delta_coeffs_delta_mu’: dmu_Delta_coeffs_delta_mu,

198 ’dB_Delta’: dB_Delta,

199 ’dB_Delta_coeffs_delta_B’: dB_Delta_coeffs_delta_B,

200 ’dB_Delta_coeffs_delta_mu’: dB_Delta_coeffs_delta_mu,

201 ’d2mu_Delta’: d2mu_Delta,

202 ’d2B_Delta’: d2B_Delta

203 }

204 with open(fname, ’wb’) as f:

205 pickle.dump(Delta_expr, f)

206

207 H_symbols_common = (omegal?, Omega_A, Omega_B, Omega_D, Omega_E, Omega_mu)
208 |H_symbols_no_dB = H_symbols_common + (delta_mu,)

209 |H_symbols_no_dmu = H_symbols_common + (delta_B,)

210 |H_symbols_all = Hsymbols

211
212 |# lambdify these expressions; this can’t be pickled

213 |Delta_func = short_lambdify(H_symbols_all, Delta)

214 |Delta_coeffs_delta_B_func = short_lambdify(H_symbols_no_dB,

215 Delta_coeffs_delta_B)
216 |Delta_coeffs_delta_mu_func = sympy.lambdify (H_symbols_no_dmu,
217 Delta_coeffs_delta_mu)

218 |dmu_Delta_func = sympy.lambdify (H_symbols_all, dmu_Delta)
219 |dmu_Delta_coeffs_delta_B_func = sympy.lambdify(H_symbols_no_dB,

220 dmu_Delta_coeffs_delta_B)
221 |dmu_Delta_coeffs_delta_mu_func = sympy.lambdify (H_symbols_no_dmu,
222 dmu_Delta_coeffs_delta_mu)

223 |dB_Delta_func = sympy.lambdify(H_symbols_all, dB_Delta)
224 | dB_Delta_coeffs_delta_B_func = sympy.lambdify(H_symbols_no_dB,

225 dB_Delta_coeffs_delta_B)
226 | dB_Delta_coeffs_delta_mu_func = sympy.lambdify(H_symbols_no_dmu,
227 dB_Delta_coeffs_delta_mu)

228 | d2mu_Delta_func = sympy.lambdify(H_symbols_all, d2mu_Delta)
229 | d2B_Delta_func = sympy.lambdify (H_symbols_all, d2B_Delta)

230
231 |# helper function for multivariate mormal distribution; scipy’s has a bad API
232
233 | def multivariate_normal_pdf (Sigma, *args):

234 d = len(args)

235 x = np.array(args)

236 coef = 1 / np.sqrt((2*np.pi)**d * np.linalg.det(Sigma))

237

238 # permutation sending the first dimension to the second—last
239 axes = list (range(x.ndim))

240 axes [0] = -2

241 axes[-2] = 0

242

243 xDivSigma = np.linalg.solve(Sigma, np.transpose(x, axes=axes))

60

244 xDivSigma = np.transpose(xDivSigma, axes=axes)

245

246 return coef * np.exp(-np.einsum(’i...,i...’, x, xDivSigma)/2)
247

248 |# computes a grid of atom output signal, without multisampling
249

250 | def rho_steady_state(omega_12, omega_34, delta_B, delta_mu, Omega_A,
251 Omega_B, Omega_D, Omega_E, Omega_mu, tau_12,
252 tau_34, gamma_13, gamma_14, gamma_23, gamma_24,
253 gamma_2d, gamma_3d, gamma_4d, T):

254 n_12 = 1 / np.expml (hbar*omega_12/(kB*T))

255 n_34 = 1 / np.expml (hbar*omega_34/(kB*T))

256 L = Lrealfunc(

257 omega_l2=omega_12,

258 delta_B=delta_B,

259 delta_mu=delta_mu,

260 Omega_A=0mega_A,

261 Omega_B=0mega_B,

262 Omega_D=0mega_D,

263 Omega_E=0mega_E,

264 Omega_mu=0mega_mu,

265 gamma_12=1/(tau_12*(n_12+1)),

266 gamma_13=gamma_13,

267 gamma_l4=gamma_14,

268 gamma_23=gamma_23,

269 gamma_24=gamma_24,

270 gamma_34=1/(tau_34*(n_34+1)),

271 gamma_2d=gamma_2d,

272 gamma_3d=gamma_3d,

273 gamma_4d=gamma_4d,

274 n_12=n_12,

275 n_34=n_34

276)

277 L[0,:] = np.identity(4) [flatten]

278

279 b = np.zeros(16)

280 b[0] =1

281

282 rho_real = np.linalg.solve(L, D)

283 rho = real_to_complex @ rho_real

284 return rho[unflatten]

285

286 | def atom_signal (omega_12, omega_34, delta_B, delta_mu, Omega_A,
287 Omega_B, Omega_D, Omega_E, Omega_mu, tau_12, tau_34,
288 gamma_13, gamma_14, gamma_23, gamma_24, C_14,
289 C_24, gamma_2d, gamma_3d, gamma_4d, T):

290 rho = rho_steady_state(

291 omega_12=omega_12,

292 omega_34=omega_34,

293 delta_B=delta_B,

294 delta_mu=delta_mu,

295 Omega_A=0Omega_A,

296 Omega_B=0mega_B,

297 Omega_D=0mega_D,

298 Omega_E=0mega_E,

299 Omega_mu=0mega_mu,

300 tau_12=tau_12,

301 tau_34=tau_34,

302 gamma_13=gamma_13,

303 gamma_l4=gamma_14,

304 gamma_23=gamma_23,

305 gamma_24=gamma_24,

306 gamma_2d=gamma_2d,

307 gamma_3d=gamma_3d,

308 gamma_4d=gamma_44d,

309 T=T

61

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

signal_D = C_24
signal_E = C_14 rho [3,0]

photon_rate_out np.abs(signal_D + signal_E) **2
return photon_rate_out

rho[3,1]

* %

def atom_scan(delta_mu_min, delta_mu_max, delta_mu_points,
delta_B_min, delta_B_max, delta_B_points,
omega_12, omega_34, Omega_A, Omega_B, Omega_D, Omega_E,
Omega_mu, tau_12, tau_34, gamma_13, gamma_14, C_14, C_24,
gamma_23, gamma_24, gamma_2d, gamma_3d, gamma_4d, T):
delta_mu = np.linspace(delta_mu_min, delta_mu_max, delta_mu_points)
delta_B = np.linspace(delta_B_min, delta_B_max, delta_B_points)
delta_mu, delta_B = np.meshgrid(delta_mu, delta_B, indexing=’ij’)

scan = np.zeros_like(delta_mu)
for i in range(scan.shape[0]):
for j in range(scan.shape[1]):
scan[i,j] = atom_signal(

omega_1l2=omega_12,
omega_34=omega_34,
delta_B=delta_BI[i,j],
delta_mu=delta_muli,j],
Omega_A=0mega_A,
Omega_B=0mega_B,
Omega_D=0mega_D,
Omega_E=0mega_E,
Omega_mu=0mega_mu,
tau_12=tau_12,
tau_34=tau_34,
gamma_13=gamma_13,
gamma_l4=gamma_14,
gamma_23=gamma_23,
gamma_24=gamma_24,
gamma_2d=gamma_2d,
gamma_3d=gamma_3d,
gamma_4d=gamma_4d,
C_14=C_14,
C_24=C_24,
T=T

return delta_mu, delta_B, scan
multisampling functions

def poly_real_roots(poly_coeffs):
poly = np.polynomial.Polynomial (poly_coeffs)
roots = poly.roots()
real_roots = np.array([np.real(x) for x in roots if np.imag(x)==0])
return real_roots

def poly_positive_minima(poly_func, diff_coeffs):
critical_x = poly_real_roots(diff_coeffs)
critical_y = poly_func(critical_x)

base cases

if len(critical_x) == O0:
return []

if len(critical_x) <= 1:
return critical_x

minima = []

check if leftmost critical point is minimum

62

376 if critical_y[0] < critical_y[1]:

377 minima.append(critical_x[0])

378

379 # check for mimima between critical points

380 for i in range(len(critical_x)-2):

381 y1 = critical_y[i]

382 x2 = critical_x[i+1]

383 y2 = critical_y[i+1]

384 y3 = critical_y[i+2]

385 if y1 > y2 and y3 > y2:

386 minima.append (x2)

387

388 # check if rightmost critical point is mimimum
389 if critical_y[-1] < critical_y[-2]:

390 minima.append(critical_x[-1])

391

392 return minima

393

394 |def H_get_minimal_delta_B(omega_12, delta_mu, Omega_A,
395 Omega_B, Omega_D, Omega_E, Omega_mu):
396 # minima along delta_B

397 dB_Delta_coeffs = dB_Delta_coeffs_delta_B_func(
398 omega_12=omega_12,

399 delta_mu=delta_mu,

400 Omega_A=0mega_A,

401 Omega_B=0mega_B,

402 Omega_D=0mega_D,

403 Omega_E=0mega_E,

404 Omega_mu=0mega_mu

405)[:,0]

406 Delta_short_func = lambda delta_B: Delta_func(
407 omega_l2=omega_12,

408 delta_mu=delta_mu,

409 delta_B=delta_B,

410 Omega_A=0Omega_A,

411 Omega_B=0mega_B,

412 Omega_D=0mega_D,

413 Omega_E=0mega_E,

414 Omega_mu=0mega_mu

415)

416 minima = list (poly_positive_minima(Delta_short_func, dB_Delta_coeffs))
417 is_parallel = [Truel*len(minima)

418

419 # minima along delta_-mu

420 dmu_Delta_coeffs = dmu_Delta_coeffs_delta_B_func(
421 omega_1l2=omega_12,

422 delta_mu=delta_mu,

423 Omega_A=0Omega_A,

424 Omega_B=0mega_B,

425 Omega_D=0mega_D,

426 Omega_E=0mega_E,

427 Omega_mu=0mega_mu

428)[:,0]

429 roots = poly_real_roots(dmu_Delta_coeffs)

430 for root in roots:

431 curvature = d2mu_Delta_func(

432 omega_1l2=omega_12,

433 delta_mu=delta_mu,

434 delta_B=root,

435 Omega_A=0mega_A,

436 Omega_B=0mega_B,

437 Omega_D=0mega_D,

438 Omega_E=0mega_E,

439 Omega_mu=0mega_mu

440)

441 if curvature >= 0:

63

442 minima.append(root)

443 is_parallel.append(False)

444

445 return minima, is_parallel

446

447 | def H_get_minimal_delta_mu(omega_12, delta_B, Omega_A,

448 Omega_B, Omega_D, Omega_E, Omega_mu):
449 # minitma along delta-mu

450 dmu_Delta_coeffs = dmu_Delta_coeffs_delta_mu_func/(

451 omega_1l2=omega_12,

452 delta_B=delta_B,

453 Omega_A=0mega_A,

454 Omega_B=0mega_B,

455 Omega_D=0mega_D,

456 Omega_E=0mega_E,

457 Omega_mu=0mega_mu

458 Y[:,0]

459 Delta_short_func = lambda delta_mu: Delta_func(

460 omega_1l2=omega_12,

461 delta_mu=delta_mu,

462 delta_B=delta_B,

463 Omega_A=0mega_A,

464 Omega_B=0mega_B,

465 Omega_D=0mega_D,

466 Omega_E=0mega_E,

467 Omega_mu=0mega_mu

468)

469 minima = list (poly_positive_minima(Delta_short_func, dmu_Delta_coeffs))
470 is_parallel = [True]l*len(minima)

471

472 # minima along delta-mu

473 dB_Delta_coeffs = dB_Delta_coeffs_delta_mu_func(

474 omega_12=omega_12,

475 delta_B=delta_B,

476 Omega_A=0mega_A,

477 Omega_B=0mega_B,

478 Omega_D=0mega_D,

479 Omega_E=0mega_E,

480 Omega_mu=0mega_mu

481)[:,0]

482 roots = poly_real_roots(dB_Delta_coeffs)

483 for root in roots:

484 curvature = d2B_Delta_func/(

485 omega_1l2=omega_12,

486 delta_mu=root,

487 delta_B=delta_B,

488 Omega_A=0mega_A,

489 Omega_B=0mega_B,

490 Omega_D=0mega_D,

491 Omega_E=0Omega_E,

492 Omega_mu=0mega_mu

493)

494 if curvature >= 0:

495 minima.append (root)

496 is_parallel.append(False)

497

498 return minima, is_parallel

499

500 | def find_curve_pixel_intersections(delta_mu_min, delta_mu_max, delta_mu_points,
501 delta_B_min, delta_B_max, delta_B_points,
502 omega_12, Omega_A, Omega_B,
503 Omega_D, Omega_E, Omega_mu):
504 def linspace_edges(start, stop, count):

505 dx = (stop-start) / (count-1)

506 edges = np.linspace(start-dx/2, stop+dx/2, count+1)
507 return edges

64

508

509 delta_mu_edges = linspace_edges(delta_mu_min, delta_mu_max, delta_mu_points)

510 delta_B_edges = linspace_edges (delta_B_min, delta_B_max, delta_B_points)

511 delta_mu_edges_min, delta_mu_edges_max = delta_mu_edges[0], delta_mu_edges [-1]

512 delta_B_edges_min, delta_B_edges_max = delta_B_edges[0], delta_B_edges[-1]

513

514 intersection_points = []

515 intersecting_pixels = dict ()

516 is_parallel = []

517

518 for i, dmu in enumerate(delta_mu_edges):

519 dBs, paras = H_get_minimal_delta_B(

520 omega_12=omega_12,

521 delta_mu=dmu,

522 Omega_A=0Omega_A,

523 Omega_B=0mega_B,

524 Omega_D=0mega_D,

525 Omega_E=0mega_E,

526 Omega_mu=0mega_mu

527)

528 for dB, para in zip(dBs, paras):

529 if not delta_B_edges_min <= dB <= delta_B_edges_max:

530 continue

531 point = (dmu, dB)

532 intersection_points.append ((dmu, dB))

533 is_parallel.append(para)

534

535 j = int(delta_B_points * (dB-delta_B_edges_min) /
(delta_B_edges_max-delta_B_edges_min))

536 if 1 > 0:

537 if (i-1,j) not in intersecting_pixels:

538 intersecting_pixels[i-1,j] = []

539 intersecting_pixels[i-1,j].append(point)

540 if i < delta_mu_points:

541 if (i,j) not in intersecting_pixels:

542 intersecting_pixels[i,j] = []

543 intersecting_pixels[i,j].append(point)

544

545 for j, dB in enumerate(delta_B_edges):

546 dmus, paras = H_get_minimal_delta_mu/(

547 omega_l2=omega_12,

548 delta_B=dB,

549 Omega_A=0mega_A,

550 Omega_B=0mega_B,

551 Omega_D=0mega_D,

552 Omega_E=0mega_E,

553 Omega_mu=0mega_mu

554)

555 for dmu, para in zip(dmus, paras):

556 if not delta_mu_edges_min <= dmu <= delta_mu_edges_max:

557 continue

558 point = (dmu, dB)

559 intersection_points.append((dmu, dB))

560 is_parallel.append(para)

561

562 i = int(delta_mu_points * (dmu-delta_mu_edges_min) /
(delta_mu_edges_max-delta_mu_edges_min))

563 if j > 0:

564 if (i,j-1) not in intersecting_pixels:

565 intersecting_pixels[i,j-1] = []

566 intersecting_pixels[i,j-1].append(point)

567 if j < delta_B_points:

568 if (i,j) not in intersecting_pixels:

569 intersecting_pixels[i,j] = []

570 intersecting_pixels[i,j].append(point)

571

65

572

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

return delta_mu_edges, delta_B_edges, intersection_points, intersecting_pixels,

is_parallel

precompute Gauss—Lobatto quadrature nodes and weights
gauss_lobatto_nodes_weights = dict ()
for n in range(2, 100):
legendre_coeffs = (0,)*(n-1) + (1,)
legendre_poly = np.polynomial.Legendre(legendre_coeffs)
nodes = legendre_poly.deriv().roots ()
nodes = np.concatenate([[-1.0], nodes, [1.0]])
weights = 2 / (n*(n-1)*legendre_poly(nodes) **2)

convert from [—1, 1] to [0, 1]
nodes = (nodes+1)/2
weights = weights/2

gauss_lobatto_nodes_weights[n] = (nodes, weights)

def composite_gauss_lobatto_nodes_weights(n, a, b, intermediates=[])
if n not in gauss_lobatto_nodes_weights:
raise ValueError
if a >= b:
raise ValueError

intermediates = [x for x in intermediates if a < x < b]
points = sorted([a, b] + intermediates)
num_points = len(points)
base_nodes, base_weights = gauss_lobatto_nodes_weights [n]
if num_points == 2:

L = points[1] - points[0]

nodes = points[0] + base_nodesx*L

weights = base_weightsx*L

return nodes, weights

count = (num_points-1)*(n-1) + 1
nodes = np.zeros (count)
weights = np.zeros(count)

first and last node

nodes [0] = points [0]

weights [0] = base_weights[0] * (points[1]-points[0])
nodes [1] = points[-1]

weights [1] = base_weights[-1] * (points[-1]-points[-2])
filled = 2

nodes at intermediate points

for i in range(l,num_points-1):
nodes [filled] = points[il]
weights[filled] = base_weights[-1]*(points[i]l-points[i-1])
weights[filled] += base_weights [0]*(points[i+1]-points[i])
filled += 1

nodes between points
if n == 2:
return nodes, weights
for i in range(num_points-1):
L = points[i+1]-points[i]
nodes [filled:filled+n-2] = points[i] + base_nodes[1:-1]%L
weights[filled:filled+n-2] = base_weights[1:-1]%L
filled += n-2

return nodes, weights
def atom_signal_integrated(delta_mu_min, delta_mu_max, delta_B_min,

edge_points, omega_12, omega_34, Omega_A,
Omega_D,

66

delta_B_max,
Omega_B,

636
637

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

Omega_E, Omega_mu, tau_12, tau_34, gamma_13, gamma_14,

gamma_23, gamma_24, gamma_2d, gamma_3d, gamma_4d,
C_24, T):
outer_order = 5
inner_order 10

delta_B_linewidth = gamma_3d
delta_mu_linewidth = gamma_3d + gamma_4d

area = (delta_mu_max-delta_mu_min) * (delta_B_max-delta_B_min)

def lerp(a, b, t):
return a + t*(b-a)

def ilerp(a, b, x):
return (x-a)/(b-a)

def normalise_delta_mu(delta_mu):

return ilerp(delta_mu_min, delta_mu_max, delta_mu)
def unnormalise_delta_mu(t):

return lerp(delta_mu_min, delta_mu_max, t)
def normalise_delta_B(delta_B):

return ilerp(delta_B_min, delta_B_max, delta_B)
def unnormalise_delta_B(t):

return lerp(delta_B_min, delta_B_max, t)

def bounds_range (array):
if len(array) == 0:

return [], O

if len(array) == 1:

return list (array), 0

a = np.min(array)
b = np.max(array)
return [a, b], b-a

def atom_signal_short(delta_mu, delta_B):

return atom_signal(
omega_1l2=omega_12,
omega_34=omega_34,
delta_mu=delta_mu,
delta_B=delta_B,
Omega_A=0Omega_A,
Omega_B=0mega_B,
Omega_D=0Omega_D,
Omega_E=0Omega_E,
Omega_mu=0mega_mu,
tau_12=tau_12,
tau_34=tau_34,
gamma_13=gamma_13,
gamma_l4=gamma_14,
gamma_23=gamma_23,
gamma_24=gamma_24,
gamma_2d=gamma_2d,
gamma_3d=gamma_3d,
gamma_4d=gamma_4d,

Cc_14=C_14,
C_24=C_24,
T=T,
)
edge_mu_points = [x[0] for x in edge_points]
edge_B_points = [x[1] for x in edge_points]

get direction for outer integral
if len(edge_points) == 0:
outer = ’delta_mu’ # arbitrary

67

c_14,

701 elif len(edge_points) == 1:

702 edge_mu = edge_mu_points [0]

703 edge_B = edge_B_points [0]

704 if normalise_delta_mu(edge_mu) > normalise_delta_B(edge_B):
705 outer = ’delta_mu’

706 else:

707 outer = ’delta_B’

708 else:

709 edge_mu_min = np.min(edge_mu_points)

710 edge_mu_max = np.max(edge_mu_points)

711 edge_B_min = np.min(edge_B_points)

712 edge_B_max = np.max(edge_B_points)

713 width_mu = (edge_mu_max-edge_mu_min) / (delta_mu_max-delta_mu_min)
714 width_B = (edge_B_max-edge_B_min) / (delta_B_max-delta_B_min)
715 if width_mu > width_B:

716 outer = ’delta_mu’

717 else:

718 outer = ’delta_B’

719

720 # orientation —meutral definitions

721 def atom_signal_short_neutral(delta_outer, delta_inner):
722 if outer == ’delta_mu’:

723 delta_mu = delta_outer

724 delta_B = delta_inner

725 else:

726 delta_mu = delta_inner

727 delta_B = delta_outer

728 return atom_signal_short(delta_mu, delta_B)
729

730 def H_get_minimal_delta_inner (delta_outer):
731 if outer == ’delta_mu’:

732 return H_get_minimal_delta_B(

733 omega_1l2=omega_12,

734 delta_mu=delta_outer,

735 Omega_A=0mega_A,

736 Omega_B=0mega_B,

737 Omega_D=0Omega_D,

738 Omega_E=0mega_E,

739 Omega_mu=0mega_mu

740)

741 else:

742 return H_get_minimal_delta_mu(

743 omega_12=omega_12,

744 delta_B=delta_outer,

745 Omega_A=0Omega_A,

746 Omega_B=0Omega_B,

747 Omega_D=0mega_D,

748 Omega_E=0Omega_E,

749 Omega_mu=0mega_mu

750)

751

752 if outer == ’delta_mu’:

753 delta_outer_min = delta_mu_min

754 delta_outer_max = delta_mu_max

755 delta_inner_min = delta_B_min

756 delta_inner_max = delta_B_max

757 delta_inner_linewidth = delta_B_linewidth
758 edge_outer_points = edge_mu_points

759 edge_inner_points = edge_B_points

760 else:

761 delta_outer_min = delta_B_min

762 delta_outer_max = delta_B_max

763 delta_inner_min = delta_mu_min

764 delta_inner_max = delta_mu_max

765 delta_inner_linewidth = delta_mu_linewidth
766 edge_outer_points = edge_B_points

68

767
768
769
770
771
772
773
774
775
776
T
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803

804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820

821
822
823
824
825
826
827
828
829
830

edge_inner_points = edge_mu_points

edge_outer_bounds,

set up diagnostic

log = {
’delta_mu_min’:
’delta_mu_max’:

= bounds_range (edge_outer_points)

logging

delta_mu_min,
delta_mu_max,

’delta_B_min’:
’delta_B_max’: delta_B_max,
’edge_points’: edge_points,
’omega_12’: omega_12,
’omega_34’: omega_34,

delta_B_min,

’Omega_A’: Omega_A,
’Omega_B’: Omega_B,
’Omega_D’: Omega_D,
’Omega_E’: Omega_E,

’Omega_mu’: Omega_mu,
’tau_12’: tau_12,
’tau_34’: tau_34,

’gamma_13’: gamma_13,
’gamma_14’: gamma_14,
’gamma_23’: gamma_23,
’gamma_24’: gamma_24,
’gamma_2d’: gamma_2d,
’gamma_3d’: gamma_3d,
’gamma_4d’: gamma_4d,

’C_14’: C_14,
’C_247’: C_24,
’T’: T,
’outer’: outer

}

perform integral

integral = 0

outer_nodes, outer_weights = composite_gauss_lobatto_nodes_weights(
outer_order, delta_outer_min, delta_outer_max,

intermediates=edge_outer_bounds)

log[’outer_integral’] = {

’intermediates’: edge_outer_bounds,
’nodes’: outer_nodes,
’weights’: outer_weights,
’inner_integrals’: []

}

for outer_node, outer_weight in zip(outer_nodes, outer_weights):
inner_intersections, _ = H_get_minimal_delta_inner (outer_node)
inner_intermediates = [z*delta_inner_linewidth+x

for x in inner_intersections
for z in (-10, -3, -1, 0, 1, 3, 10)]
log_inner_integral = {
’intersections’: inner_intersections,
’intermediates’: inner_intermediates
}
inner_nodes, inner_weights = composite_gauss_lobatto_nodes_weights(
inner_order , delta_inner_min, delta_inner_max,
intermediates=inner_intermediates)
log_inner_integral[’nodes’] = inner_nodes
log_inner_integral[’weights’] = inner_weights
log_inner_integral[’values’] = []
for inner_node, inner_weight in zip(inner_nodes, inner_weights):
weight = outer_weight * inner_weight
sample = atom_signal_short_neutral(outer_node, inner_node) / area
log_inner_integral[’values’].append(sample)
integral += weight * sample
log[’outer_integral’][’inner_integrals’].append(log_inner_integral)

69

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

def

log[’integral’] = integral
return integral, log

atom_scan_integrated(delta_mu_min, delta_mu_max, delta_mu_points,
delta_B_min, delta_B_max, delta_B_points,

omega_12, omega_34, Omega_A, Omega_B, Omega_D, Omega_E,
Omega_mu, tau_12, tau_34, gamma_13, gamma_14, gamma_23,

gamma_24, gamma_2d, gamma_3d, gamma_4d, C_14, C_24,

(delta_mu_edges,

delta_B_edges,

intersection_points,

intersecting_pixels, _) = find_curve_pixel_intersections(
delta_mu_min=delta_mu_min,
delta_mu_max=delta_mu_max,
delta_mu_points=delta_mu_points,
delta_B_min=delta_B_min,
delta_B_max=delta_B_max,
delta_B_points=delta_B_points,
omega_l2=omega_12,
Omega_A=0Omega_A,
Omega_B=0mega_B,
Omega_D=0Omega_D,
Omega_E=0Omega_E,
Omega_mu=0mega_mu

scan = np.full((delta_mu_points, delta_B_points), np.nan, dtype=float)
logs dict ()
for (i,j), edge_points in intersecting_pixels.items():
scan[i,j], logs[i,j] = atom_signal_integrated(
delta_mu_min=delta_mu_edges[i],
delta_mu_max=delta_mu_edges [i+1],
delta_B_min=delta_B_edges[j],
delta_B_max=delta_B_edges[j+1],
edge_points=edge_points,
omega_1l2=omega_12,
omega_34=omega_34,
Omega_A=0Omega_A,
Omega_B=0mega_B,
Omega_D=0Omega_D,
Omega_E=0Omega_E,
Omega_mu=0mega_mu,
tau_12=tau_12,
tau_34=tau_34,
gamma_13=gamma_13,
gamma_1l4=gamma_14,
gamma_23=gamma_23,
gamma_24=gamma_24,
gamma_2d=gamma_2d,
gamma_3d=gamma_3d,
gamma_4d=gamma_4d,
C_14=C_14,
C_24=C_24,
T=T

delta_mu = np.linspace(delta_mu_min, delta_mu_max, delta_mu_points)
delta_B = np.linspace(delta_B_min, delta_B_max, delta_B_points)
delta_mu, delta_B = np.meshgrid(delta_mu, delta_B, indexing=’ij’)
for i in range(scan.shape[0]):
for j in range(scan.shape([1]):
if not np.isnan(scan([i,j]):
continue
scan[i,j] = atom_signal(
omega_1l2=omega_12,

70

T):

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962

def

omega_34=omega_34,
delta_B=delta_B[i,j],
delta_mu=delta_muli,j],
Omega_A=0Omega_A,
Omega_B=0mega_B,
Omega_D=0mega_D,
Omega_E=0mega_E,
Omega_mu=0mega_mu,
tau_12=tau_12,
tau_34=tau_34,
gamma_13=gamma_13,
gamma_l4=gamma_14,
gamma_23=gamma_23,
gamma_24=gamma_24,
gamma_2d=gamma_2d,
gamma_3d=gamma_3d,
gamma_4d=gamma_4d,
C_14=C_14,

C_24=C_24,

T=T

return (delta_mu, delta_B, scan), logs

signal_scan(delta_mu_min, delta_mu_max, delta_mu_points,
delta_B_min, delta_B_max, delta_B_points,
omega_12, omega_34, Omega_A, Omega_B, Omega_D, Omega_E,
Omega_mu, tau_12, tau_34, gamma_13, gamma_14,
gamma_23, gamma_24, gamma_2d, gamma_3d, gamma_4d, T,
C_14, C_24, Sigma, z_max=5, integrated=True):
delta_mu_res = (delta_mu_max-delta_mu_min) / (delta_mu_points-1)
delta_B_res = (delta_B_max-delta_B_min) / (delta_B_points-1)

produce Gaussian filter kernel

sigma_13 = np.sqrt(Sigma[0,0])

sigma_34 = np.sqrt(Sigmal[1,1])

sigma_13_px = sigma_13 / delta_B_res

sigma_34_px = sigma_34 / delta_mu_res

radius_13_px = int(sigma_13_px*z_max)

radius_34_px = int(sigma_34_px*z_max)

delta_13_points = 2*radius_13_px + 1

delta_34_points = 2*%radius_34_px + 1

delta_13 = np.linspace(-sigma_13*z_max, sigma_13*z_max, delta_13_points)
delta_34 = np.linspace(-sigma_34*z_max, sigma_34*z_max, delta_34_points)
delta_34, delta_13 = np.meshgrid(delta_34, delta_13, indexing=’ij’)
kernel = multivariate_normal_pdf (Sigma, delta_13, delta_34)

kernel /= np.sum(kernel)

collect atomic emission data

deltap_B_min = delta_B_min - delta_B_res*radius_13_px
deltap_B_max = delta_B_max + delta_B_res*radius_13_px
deltap_B_points = delta_B_points + delta_13_points - 1
deltap_mu_min = delta_mu_min - delta_mu_res*radius_34_px
deltap_mu_max = delta_mu_max + delta_mu_res*radius_34_px
deltap_mu_points = delta_mu_points + delta_34_points - 1

if integrated:

(_, _, atom_scan), _ = atom_scan_integrated(
delta_mu_min=deltap_mu_min,
delta_mu_max=deltap_mu_max,
delta_mu_points=deltap_mu_points,
delta_B_min=deltap_B_min,
delta_B_max=deltap_B_max,
delta_B_points=deltap_B_points,
omega_1l2=omega_12,
omega_34=omega_34,

71

963 Omega_A=0Omega_A,

964 Omega_B=0mega_B,

965 Omega_D=0mega_D,

966 Omega_E=0Omega_E,

967 Omega_mu=0mega_mu,

968 tau_12=tau_12,

969 tau_34=tau_34,

970 gamma_13=gamma_13,

971 gamma_l4=gamma_14,

972 gamma_23=gamma_23,

973 gamma_24=gamma_24,

974 gamma_2d=gamma_2d,

975 gamma_3d=gamma_3d,

976 gamma_4d=gamma_44,

977 C_14=C_14,

978 C_24=C_24,

979 T=T

980)

981 else:

982 _, _, atom_scan = atom_scan/(

983 delta_mu_min=deltap_mu_min,

984 delta_mu_max=deltap_mu_max,

985 delta_mu_points=deltap_mu_points,
986 delta_B_min=deltap_B_min,

987 delta_B_max=deltap_B_max,

988 delta_B_points=deltap_B_points,
989 omega_1l2=omega_12,

990 omega_34=omega_34,

991 Omega_A=0Omega_A,

992 Omega_B=0mega_B,

993 Omega_D=0mega_D,

994 Omega_E=0mega_E,

995 Omega_mu=0mega_mu,

996 tau_12=tau_12,

997 tau_34=tau_34,

998 gamma_13=gamma_13,

999 gamma_l4=gamma_14,

1000 gamma_23=gamma_23,

1001 gamma_24=gamma_24,

1002 gamma_2d=gamma_2d,

1003 gamma_3d=gamma_3d,

1004 gamma_4d=gamma_4d,

1005 C_14=C_14,

1006 C_24=C_24,

1007 T=T

1008)

1009

1010 # convolve

1011 ensemble_signal = signal.fftconvolve(atom_scan, kernel, mode=’valid’)
1012

1013 # return results

1014 delta_mu = np.linspace(delta_mu_min, delta_mu_max, delta_mu_points)
1015 delta_B = np.linspace(delta_B_min, delta_B_max, delta_B_points)
1016 delta_mu, delta_B = np.meshgrid(delta_mu, delta_B, indexing=’ij’)
1017 return delta_mu, delta_B, ensemble_signal

C.3 Biphoton Generation

These codes implement the three-level biphoton generation models in Chapter

72

C.3.1 Steady State

This Python code implements the steady-state model. When run as a script, it performs root finding
for cavity steady-states, and prints the (non-convergent) results of this root finding, for two sets of

0~ O Ui WK~

S U Ot O O U O O O O QU W s i s B b s s s B W0 W W W w WWwWwWwWwhNNNDNDNNDNDNNDN P == ==
QOO TDDU R WNFRF OOWWWTDANU R WNRFP, OO URE WNRFRF OO UURE WNFE OO0 U W~ O o

detuning parameters.

import numpy as np

import matplotlib.pyplot as plt
from scipy import optimize, stats
import sympy

hbar = 1.054571817e-34
kB = 1.380649e-23

gauss_lobatto_nodes_weights = dict ()

for n in range(2, 100):
legendre_coeffs = (0,)*(n-1) + (1,)
legendre_poly = np.polynomial.Legendre(legendre_coeffs)
nodes = legendre_poly.deriv().roots ()
nodes = np.concatenate([[-1.0], nodes, [1.0]])
weights = 2 / (n*(n-1)*legendre_poly(nodes) **2)

convert from [—1, 1] to [0, 1]
nodes = (nodes+1)/2
weights = weights/2

gauss_lobatto_nodes_weights[n] = (nodes, weights)

def composite_gauss_lobatto_nodes_weights(n, points):
if n not in gauss_lobatto_nodes_weights:
raise ValueError

num_points = len(points)
if num_points < 2:
raise ValueError

base_nodes, base_weights = gauss_lobatto_nodes_weights[n]
if num_points == 2:

L = points[1] - points [0]

nodes = points[0] + base_nodes*L

weights = base_weightsx*L

return nodes, weights

count = (num_points-1)*(n-1) + 1
nodes = np.zeros (count)
weights = np.zeros(count)

first and last node

nodes [0] = points [0]

weights [0] = base_weights[0] * (points[1]-points[0])
nodes [1] = points[-1]

weights [1] = base_weights[-1] * (points[-1]-points[-2])
filled = 2

mnodes at intermediate points

for i in range(l,num_points-1):
nodes [filled] = points[il]
weights[filled] = base_weights[-1]*(points[i]l-points[i-1])
weights[filled] += base_weights [0]*(points[i+1]-points[i])
filled += 1

nodes between points
if n == 2:
return nodes, weights
for i in range(num_points-1):

73

61 L = points[i+1]-points[i]

62 nodes [filled:filled+n-2] = points[i] + base_nodes[1:-1]%L
63 weights[filled:filled+n-2] = base_weights[1:-1]%L

64 filled += n-2

65

66 return nodes, weights

67

68 |# unit matrices

69 |s12 = sympy.Matrix([[O, 1, 0], [0, O, 0], [0, O, 011)
70 | s13 = sympy.Matrix([[O, O, 11, [0, O, 0], [0, O, 011)
71 |s21 = s12.H

72 |s31 = s13.H

73 |s11 = s12xs21

74 | s22 = s21%s12

75 | s23 = s21%s13

76 |s32 = s23.H

77 | 833 = s31%s13

78
79 |# Hamiltonians for Lambda—system and V—system
80
81 |Omega_p = sympy.symbols (’0Omega_p’)

82 |Omega_o = sympy.symbols(’0Omega_o’)

83 | Omega_mu = sympy.symbols(’Omega_mu’)

84 |delta_o = sympy.symbols(’delta_o’, real=True)
85 |delta_mu = sympy.symbols(’delta_mu’, real=True)
86
87 |HLambda = s21*0Omega_mu + s32*x0Omega_o + s31x0Omega_p
88 | HLambda += HLambda.H

89 | HLambda += s22*delta_mu + s33*(delta_mu+delta_o)
90
91 |HV = s21*0Omega_o + s32*0Omega_mu + s31*0Omega_p
92 |HV += HV.H

93 |HV += s22xdelta_o + s33*x(delta_mu+delta_o)

94

95 |systems = (’Lambda’, ’V’)

96 |H = {’Lambda’: HLambda, °’V’: HV}

97

98 |# decomposition of Hamiltonians into linear components

99 |Omega_or, Omega_oi = sympy.symbols(’Omega_or Omega_oi’, real=True)

100 | Omega_mur , Omega_mui = sympy.symbols(’0Omega_\\mu\\ r Omega_\\mul\ i’, real=True)
101 |subs = [

102 (Omega_o, Omega_or+sympy.I*Omega_oi),
103 (Omega_mu, Omega_mur+sympy.I*Omega_mui)
104 |1

105

106 |H_subs = dict ()

107 | for sys in systems:

108 H_subs [sys] = H[sys].subs(subs)
109
110 |HO = dict O)

111 |Hor = dict ()

112 | Hoi dict O

113 | Hmur dict O)

114 |Hmui = dict ()

115 | for sys in systems:

116 HO[sys] = H[sys].subs([(Omega_o, 0), (Omega_mu, 0)])
117 Hor [sys] = sympy.diff (H_subs[sys], Omega_or)

118 Hoil[sys] = sympy.diff (H_subs[sys], Omega_oi)

119 Hmur [sys] = sympy.diff (H_subs[sys], Omega_mur)

120 Hmui [sys] = sympy.diff (H_subs[sys], Omega_mui)

121

122 |# discriminant of characteristic polynomial of Hamiltonian
123

124 |Delta_poly_coeffs = dict ()
125 | for sys in systems:
126 Delta = H[sys].charpoly().discriminant ()

74

127 Delta_poly = sympy.poly(Delta, delta_mu, delta_o)

128 n_delta_mu = Delta_poly.degree(delta_mu)

129 n_delta_o = Delta_poly.degree(delta_o)

130 Delta_poly_coeffs[sys] = sympy.zeros(n_delta_mu+l, n_delta_o+1)

131 for (i, j), coeff in zip(Delta_poly.monoms (), Delta_poly.coeffs()):
132 Delta_poly_coeffs[sys]l[i,j] = coeff

133

134 |# liouwvillan superoperators with loss

135

136 | gamma_12, gamma_13 = sympy.symbols(’gamma_1(2:4)°’, real=True, negative=False)
137 | gamma_23 = sympy.symbols(’gamma_23’, real=True, negative=False)

138 | gamma_2d, gamma_3d = sympy.symbols(’gamma_(2:4)d’, real=True, negative=False)
139 |n_b = sympy.symbols(’n_b’, real=True, negative=False)

140

141 | def loss_operator_common(rho):

142 L13 = gamma_13/2 * (2*s13*rho*s31 - rho*s33 - s33*rho)
143 L2d = gamma_2d/2 * (2%s22*rho*s22 - rho*s22 - s22%rho)
144 L3d = gamma_3d/2 * (2*xs33*rho*s33 - rho*s33 - s33%*rho)
145 return L13 + L2d + L3d

146

147 | def loss_operator_Lambda (rho):

148 L12 = gamma_12*(n_b+1)/2 * (2*sl12xrho*s21 - rho*s22 - s22x*rho)
149 L21 = gamma_12*n_b/2 * (2*s2l*rho*sl12 - rho*sll - sllxrho)

150 L23 = gamma_23/2 * (2*xs23*rho*s32 - rho*s33 - s33%*rho)

151 return L12 + L21 + L23 + loss_operator_common (rho)

152

153 | def loss_operator_V(rho):

154 L12 = gamma_12/2 * (2*sl12*rho*s21 - rho*s22 - s22%*rho)

155 L23 = gamma_23*(n_b+1)/2 * (2*s23*rho*s32 - rho*s33 - s33*rho)
156 L32 = gamma_23*n_b/2 * (2*s32*rho*s23 - rho*s22 - s22%*rho)

157 return L12 + L23 + L32 + loss_operator_common (rho)

158

159 |loss_operator = {’Lambda’: loss_operator_Lambda, ’V’: loss_operator_V}
160

161 | def liouvillan_superoperator (H, rho, loss=None):

162 Lrho = -sympy.I*(H*rho - rhox*H)

163 if loss is not None:

164 Lrho += loss(rho)

165 return Lrho

166

167 |# liouwvillan matrices
168 | def flattening_indices (order):

169 n = order.shape [0]

170 unflatten = order

171

172 flatten_i = np.zeros(n**2, dtype=int)
173 flatten_j = np.zeros(n**2, dtype=int)
174 for i in range(n):

175 for j in range(n):

176 k = order[i,j]

177 flatten_il[k] = i

178 flatten_j[k] = j

179 flatten = (flatten_i, flatten_j)

180

181 return unflatten, flatten

182

183 | def liouvillan_matrix(H, order, loss=None):
184 n = order.shape [0]

185 mtx = sympy.zeros (n**2)

186 for icol in range(n):

187 for jcol in range(n):

188 col = order[icol, jcol]

189 rho = sympy.zeros(n)

190 rho[icol, jcol]l = 1

191 Lrho = liouvillan_superoperator (H, rho, loss=loss)
192

75

193 for irow in range(n):

194 for jrow in range(n):

195 row = order[irow, jrow]

196 mtx [row,col] = Lrho[irow, jrow]
197 return mtx

198

199 | order = np.array ([

200 [0, 1, 21,

201 [3, 4, 5],

202 [6, 7, 8]

203 | 1)

204 |unflatten, flatten = flattening_indices (order)
205

206 |LO = dict ()

207 |Lor = dict ()

208 |Loi dict O

209 | Lmur dict O)

210 |Lmui = dict)

211 |L = dict O

212 | for sys in systems:

213 LO[sys] = liouvillan_matrix(HO[sys], order, loss=loss_operator[sys])
214 Lor[sys] = liouvillan_matrix(Hor[sys], order)

215 Loi[sys] = liouvillan_matrix (Hoilsys], order)

216 Lmur [sys] = liouvillan_matrix (Hmur[sys], order)

217 Lmui[sys] = liouvillan_matrix (Hmuil[sys], order)

218 Llsys] = liouvillan_matrix(H[sys], order, loss=loss_operator[sys])
219

220 |# real matrices

221

222 | def hermitian_complex_to_real (order):

223 n = order.shape [0]

224 C = sympy.zeros(n**2)

225

226 # diagonals are already real, so keep them as—is

227 for k¥ in range(n):

228 ik = order [k,k]

229 Clik,ik] = 1

230

231 # transform off—diagonal pairs from (z, z+) to (Re z, Im z)
232 for j in range(n-1):

233 for k in range(j+1i, n):

234 i_upper = order[j, k]

235 i_lower = order [k, j]

236 C[i_upper ,i_upper] = sympy.Rational(l, 2)

237 C[i_upper,i_lower] = sympy.Rational(l, 2)

238 C[i_lower ,i_upper] = -sympy.I/2

239 C[i_lower ,i_lower] = sympy.I/2

240

241 return C

242

243 | CtoR = hermitian_complex_to_real (order)
244 |RtoC CtoR.inv ()

245
246 |LO_real = dict ()
247 |Lor_real = dict ()
248 | Loi_real dict O
249 | Lmur_real = dict ()
250 |Lmui_real = dict ()
251 |L_real = dict()

252 | for sys in systems:

253 LO_real[sys] = sympy.re(CtoR * LO[sys] * RtoC)

254 Lor_real[sys] = sympy.re(CtoR * Lor[sys] * RtoC)
255 Loi_real[sys] = sympy.re(CtoR * Loil[sys] * RtoC)
256 Lmur_real[sys] = sympy.re(CtoR * Lmur[sys] * RtoC)
257 Lmui_real[sys] = sympy.re(CtoR * Lmuilsys] * RtoC)
258 L_real[sys] = sympy.re(CtoR * L[sys] * RtoC)

76

259
260 |# numerical matrices

261

262 | def lambdify_wrapper (args, expr):

263 return sympy.lambdify(args, expr, ’numpy’, cse=True, docstring_limit=0)
264

265 | def numerify_zero_args_expr (expr):

266 # evil hack

267 X = sympy.symbols(’x’)

268 return lambdify_wrapper (x, expr) (None)
269

270 | CtoR_num = numerify_zero_args_expr (CtoR)
271 |RtoC_num = numerify_zero_args_expr (RtoC)
272

273 | args_d = (Omega_p, Omega_mu, Omega_o)

274 | args_hO0 = (delta_mu, delta_o, Omega_p)

275 |args_in = (Omega_mu, Omega_o)

276 | args_decay = (gamma_12, gamma_13, gamma_23, gamma_2d, gamma_3d, n_b)
277
278 |args_h = args_hO + args_in

279 |args_10 = args_decay + args_hoO
280 |args_1 = args_10 + args_in

281
282 | HO_func = dict ()
283 | Hor_num dict ()
284 | Hoi_num dict ()
285 | Hmur_num = dict ()
286 |Hmui_num = dict ()
287 |H_func = dict ()

288 | for sys in systems:

289 HO_func[sys] = lambdify_wrapper (args_hO, HO[sys])
290 Hor_num([sys] = numerify_zero_args_expr (Hor [sys])
291 Hoi_num([sys] = numerify_zero_args_expr (Hoil[sys])
292 Hmur_num[sys] = numerify_zero_args_expr (Hmur [sys])
293 Hmui_num[sys] = numerify_zero_args_expr (Hmui[sys])
294 H_func[sys] = lambdify_wrapper (args_h, H[sys])

295

296 |Delta_poly_coeffs_func = dict ()

297 | for sys in systems:

298 Delta_poly_coeffs_func[sys] = lambdify_wrapper (args_d, Delta_poly_coeffs[sys])
299
300 |LO_func = dict ()
301 |Lor_num dict ()
302 |Loi_num = dict ()
303 | Lmur_num = dict ()
304 |Lmui_num = dict ()
305 |L_func = dict ()

306 | for sys in systems:

307 LO_func[sys] = lambdify_wrapper (args_10, LO[sys])
308 Lor_num[sys] = numerify_zero_args_expr (Lor[sys])
309 Loi_num[sys] = numerify_zero_args_expr (Loil[sys])
310 Lmur_num[sys] = numerify_zero_args_expr (Lmur[sys])
311 Lmui_num[sys] = numerify_zero_args_expr (Lmuil[sys])
312 L_func([sys] = lambdify_wrapper (args_1, L[sys])

313

314 |LO_real_func = dict ()

315 |Lor_real_num = dict ()

316 |Loi_real_num = dict ()

317 |Lmur_real_num = dict ()
318 |Lmui_real_num = dict ()
319 |L_real_func = dict ()
320 | for sys in systems:

321 LO_real_func[sys] = lambdify_wrapper (args_10, LO_real[sys])
322 Lor_real_num[sys] = numerify_zero_args_expr (Lor_reall[sys])
323 Loi_real_num[sys] = numerify_zero_args_expr(Loi_reall[sys])
324 Lmur_real_num[sys] = numerify_zero_args_expr (Lmur_real[sys])

7

325 Lmui_real_num[sys] = numerify_zero_args_expr (Lmui_real[sys])
326 L_real_func[sys] = lambdify_wrapper(args_1l, L_reall[sys])
327

328 | def poly_bivariate_coeffs_diff_left (coeffs):

329 nx = coeffs.shape[0]-1

330 ny = coeffs.shape[1]-1

331 i, j = np.indices((nx, ny+1))

332 return (i+1) * coeffs[1:,:]

333

334 | def poly_bivariate_coeffs_diff_right (coeffs):

335 nx = coeffs.shape[0]-1

336 ny = coeffs.shape[1]-1

337 i, j = np.indices ((nx+1, ny))

338 return (j+1) * coeffs[:,1:]

339

340 | def poly_coeffs_diff (coeffs):

341 n = len(coeffs) -1

342 k = np.arange (1, n+1)

343 return k * coeffs[1:]

344

345 | def poly_bivariate_coeffs_evaluate_left(coeffs, x):
346 n = coeffs.shape[0]-1

347 k = np.arange(n+1)

348 return (x**k) @ coeffs

349

350 | def poly_bivariate_coeffs_evaluate_right (coeffs, y):
351 n = coeffs.shape[1]-1

352 k = np.arange(n+1)

353 return coeffs @ (yxxk)

354

355 | def poly_bivariate_coeffs_evaluate(coeffs, x, y):
356 i, j = np.indices(coeffs.shape)

357 return np.sum(coeffs * x**i * y**j)

358

359 | def poly_coeffs_evaluate (coeffs, x):

360 n = len(coeffs)-1

361 k = np.arange(n+1)

362 return np.sum(coeffs * x*xxk)

363

364 | def poly_coeffs_roots(coeffs):

365 roots = np.polynomial.polynomial.polyroots(coeffs)
366 roots = np.unique(roots)

367 is_real = (np.imag(roots)==0)

368 return np.real(roots[is_reall])

369

370 |def rho_steady_state(gamma_12, gamma_13, gamma_23, gamma_2d, gamma_3d, n_b,
371 delta_mu, delta_o, Omega_p, Omega_mu, Omega_o, sys):
372 L_mtx = L_real_func[sys](

373 gamma_12=gamma_12,

374 gamma_13=gamma_13,

375 gamma_23=gamma_23,

376 gamma_2d=gamma_2d,

377 gamma_3d=gamma_3d,

378 n_b=n_b,

379 delta_mu=delta_mu,

380 delta_o=delta_o,

381 Omega_p=0mega_p,

382 Omega_mu=0mega_mu,

383 Omega_o=0mega_o

384)

385 L_mtx[0,:] = np.identity(3) [flatten]

386 b = np.zeros (9)

387 b[0] =1

388 rho_real = np.linalg.solve(L_mtx, b)

389 rho = RtoC_num @ rho_real

390 rho = rho[unflatten]

78

391
392
393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

def

def

return rho

rho_linear_steady_state_components(gamma_12, gamma_13, gamma_23, gamma_2d,
gamma_3d,
n_b, delta_mu, delta_o, Omega_p, sys):

LO_mtx = LO_real_funcl[sys](

gamma_1l2=gamma_12,

gamma_13=gamma_13,

gamma_23=gamma_23,

gamma_2d=gamma_2d,

gamma_3d=gamma_3d,

n_b=n_b,

delta_mu=delta_mu,

delta_o=delta_o,

Omega_p=0mega_p
)
LO_mtx[0,:] = np.identity(3) [flatten]

b = np.zeros(9)

b[0] = 1

rho_O_real = np.linalg.solve(LO_mtx, D)
rho_0 = RtoC_num @ rho_O_real

b = -Lor_real_num([sys] @ rho_O_real

b[0] = 0

rho_or_real = np.linalg.solve(LO_mtx, b)
rho_or = RtoC_num @ rho_or_real

b = -Loi_real_num([sys] @ rho_O_real

b[0] = 0

rho_oi_real = np.linalg.solve(LO_mtx, b)
rho_oi = RtoC_num @ rho_oi_real

b = -Lmur_real_num[sys] @ rho_O_real

b[0] = 0

rho_mur_real = np.linalg.solve(LO_mtx, b)
rho_mur = RtoC_num @ rho_mur_real

b = -Lmui_real_num[sys] @ rho_O_real

b[0] = 0

rho_mui_real = np.linalg.solve(LO_mtx, b)
rho_mui = RtoC_num @ rho_mui_real

rho_0 = rho_O[unflatten]

rho_or = rho_or[unflatten]
rho_oi = rho_oi[unflatten]
rho_mur = rho_mur [unflatten]
rho_mui = rho_mui[unflatten]

return rho_0, rho_or, rho_oi, rho_mur, rho_mui

rho_steady_state_ensemble(gamma_12, gamma_13, gamma_23, gamma_2d, gamma_3d,
n_b, delta_mu, delta_o, Omega_p, Omega_mu,
Omega_o, sigma_mu, sigma_o, sys, logging=False):

gauss_lobatto_order = 20

gamma_oh = gamma_2d + (gamma_3d if sys==’Lambda’ else 0)

gamma_muh = gamma_2d + (gamma_3d if sys==’V’ else 0)

distribution envelope

G_mu = stats.norm(loc=delta_mu, scale=sigma_mu).pdf
G_o = stats.norm(loc=delta_o, scale=sigma_o).pdf
G = lambda dp_mu, dp_o: G_mu(dp_mu) * G_o(dp_o)

set up for curve finding

Delta_coeffs_2 = Delta_poly_coeffs_func[sys](
Omega_p=0Omega_p,
Omega_mu=0Omega_mu,

79

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

478

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

Omega_o=0mega_o
)
dmu_Delta_coeffs_2 = poly_bivariate_coeffs_diff_left(Delta_coeffs_Q)
do_Delta_coeffs_2 = poly_bivariate_coeffs_diff_right(Delta_coeffs_2)

get integral points

node_deltap_o = np.array([], dtype=float)
node_deltap_mu = np.array([], dtype=float)
node_weight = np.array([], dtype=float)

set up outer integral
deltap_o_intervals = [delta_o + zxsigma_o
for z in (-10, -3, -1, 0, 1, 3, 10)]
deltap_o_intervals += [z*gamma_oh for z in (-5, -1, 0, 1, 5)]
deltap_o_intervals = sorted(deltap_o_intervals)
deltap_o_nodes, deltap_o_weights = composite_gauss_lobatto_nodes_weights(
gauss_lobatto_order, deltap_o_intervals)

selt up inner integral
for dp_o, w_o in zip(deltap_o_nodes, deltap_o_weights):

dmu_Delta_coeffs = poly_bivariate_coeffs_evaluate_right (dmu_Delta_coeffs_2,
dp_o)
do_Delta_coeffs = poly_bivariate_coeffs_evaluate_right(do_Delta_coeffs_2,
dp_o)
dmu_critical = np.concatenate ([
poly_coeffs_roots(dmu_Delta_coeffs),
poly_coeffs_roots(do_Delta_coeffs)
D
deltap_mu_intervals = [delta_mu + z*sigma_mu
for z in (-10, -3, -1, 1, 3, 10)]
deltap_mu_intervals += [z*gamma_muh for z in (-5, -1, 0, 1, 5)]

deltap_mu_intervals += list (dmu_critical)
deltap_mu_intervals = sorted(deltap_mu_intervals)
deltap_mu_nodes, deltap_mu_weights = composite_gauss_lobatto_nodes_we

gauss_lobatto_order, deltap_mu_intervals)

node_deltap_o = np.concatenate([node_deltap_o, np.full_like(deltap_mu

dp_o)1)
node_deltap_mu = np.concatenate([node_deltap_mu, deltap_mu_nodes])
node_weight = np.concatenate ([node_weight, w_o*deltap_mu_weights])

node_G = G(node_deltap_mu, node_deltap_o)
perform integral

integral = np.zeros((3,3), dtype=complex)
for dp_o, dp_mu, w, g in zip(node_deltap_o, node_deltap_mu, node_weight,
integral += w*xg * rho_steady_state(
gamma_12=gamma_12,
gamma_13=gamma_13,
gamma_23=gamma_23,
gamma_2d=gamma_2d,
gamma_3d=gamma_3d,
n_b=n_b,
delta_mu=dp_mu,
delta_o=dp_o,
Omega_p=0Omega_p,
Omega_mu=0mega_mu,
Omega_o=0mega_o,
sys=sys

if logging:

80

ights(

_nodes,

node_G) :

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

553

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

def

def

def

return (node_deltap_mu, node_deltap_o, node_weight, node_G), integral
else:
return integral

Omega_cavity(g, alpha):
return g * np.exp(lj*np.angle(alpha)) * np.sqrt(np.abs(alpha)**2 + 1)

cavity_langevin_diff (gamma_12, gamma_13, gamma_23, gamma_2d, gamma_3d,
n_b, gamma_oi, gamma_oc, gamma_mui, gamma_muc,
N_o, N_mu, g_o, g_mu, Omega_p, alpha, beta,
alpha_in, beta_in, delta_mu, delta_o, delta_co,
delta_cmu, sigma_mu, sigma_o, sys, return_S=False) :
S = rho_steady_state_ensemble(
gamma_12=gamma_12,
gamma_13=gamma_13,
gamma_23=gamma_23,
gamma_2d=gamma_2d,
gamma_3d=gamma_3d,
n_b=n_b,
delta_mu=delta_mu,
delta_o=delta_o,
Omega_p=0Omega_p,
Omega_o=0mega_cavity(g_o, alpha),
Omega_mu=0mega_cavity(g_mu, beta),
sigma_o=sigma_o,
sigma_mu=sigma_mu,

sys=sys
)

S_alpha = N_o*np.conj(g_o) * (S[1,0] if sys==’V’ else S[2,1])
S_beta = N_mu*np.conj(g_mu) * (S[2,1] if sys==’V’ else S[1,0])
d_alpha_S = -1j*S_alpha

d_beta_S = -1j*S_beta

d_alpha_not_S = -1j*delta_co*alpha - (gamma_oi+gamma_oc)*alpha/2 +
np.sqrt (gamma_oc)*alpha_in

d_beta_not_S = -l1j*delta_cmu*beta - (gamma_mui+gamma_muc)*beta/2 +

np.sqrt (gamma_muc)*beta_in
d_alpha = d_alpha_S + d_alpha_not_S
d_beta = d_beta_S + d_beta_not_S

if return_S:

return d_alpha_S, d_beta_S, d_alpha_not_S, d_beta_not_S
else:

return d_alpha, d_beta

cavity_steady_state(gamma_12, gamma_13, gamma_23, gamma_2d, gamma_3d,
n_b, gamma_oi, gamma_oc, gamma_mui, gamma_muc,
N_o, N_mu, g_o, g_mu, Omega_p, alpha_in, beta_in,
delta_mu, delta_o, delta_co, delta_cmu, sigma_mu,
sigma_o, sys, alpha_0=1, beta_0=1):
def pack_vector (alpha, beta):
vec = np.zeros (4)
vec [0] = np.real(alpha)
vec[1] = np.imag(alpha)
vec [2] = np.real(beta)
vec [3] = np.imag(beta)
return vec

def unpack_vector (vec):
alpha_r = vec[0]
alpha_i = vec[1]
beta_r = vec[2]
beta_i = vec[3]
alpha = alpha_r + 1j*alpha_i
beta = beta_r + 1j*beta_i
return alpha, beta

81

583

584 def diff_func(vec):

585 alpha, beta = unpack_vector (vec)

586 d_alpha, d_beta = cavity_langevin_diff (

587 gamma_l12=gamma_12,

588 gamma_13=gamma_13,

589 gamma_23=gamma_23,

590 gamma_2d=gamma_2d,

591 gamma_3d=gamma_3d,

592 n_b=n_b,

593 gamma_oi=gamma_oi,

594 gamma_oc=gamma_oc,

595 gamma_mui=gamma_mui,

596 gamma_muc=gamma_muc ,

597 N_o=N_o,

598 N_mu=N_mu,

599 g_o=g_o,

600 g_mu=g_mu,

601 Omega_p=0mega_p,

602 alpha=alpha,

603 beta=beta,

604 alpha_in=alpha_in,

605 beta_in=beta_in,

606 delta_mu=delta_mu,

607 delta_o=delta_o,

608 delta_co=delta_co,

609 delta_cmu=delta_cmu,

610 sigma_mu=sigma_mu,

611 sigma_o=sigma_o,

612 sys=sys

613)

614

615 d_vec = pack_vector(d_alpha, d_beta)

616 return d_vec

617

618 vO = pack_vector (alpha_0, beta_0)

619 result = optimize.root(diff_func, v0)#, method="broydenli ’,
options={"ftol ':1e—12})

620 return result

621

622 | def planck_excitation(T, omega):

623 return 1 / np.expml (hbar*omega/(kB*T))

624

625 | if __name__ == ’__main__’:

626 sys = ’Lambda’

627 omega_12 = 2*np.pix*5.186e9

628 d13 = 1.63e-32

629 d23 = 1.15e-32

630 tau_12 = 11

631 tau_3 = 0.011

632 gamma_2d = 1e6

633 gamma_3d = 1e6

634 sigma_o = 2*np.pi*419e6

635 sigma_mu = 2%np.pi*5e6

636 N = 1el6

637 gamma_oi = 2%np.pi*7.95e6

638 gamma_oc = 2*np.pix*1.7e6

639 gamma_mui = 2*np.pi*650e3

640 gamma_muc = 2*np.pix*l1.5e6

641 g_o = 51.9

642 g_mu = 1.04

643

644 T = 4.6

645 n_b = planck_excitation(T, omega_12)

646 tau_13 = tau_3 * di13**2 / (d13*%x2 + d23*%2)

647 tau_23 = tau_3 * d23**2 / (d13**2 + d23x*x*2)

82

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

0~ U= W

gamma_12 = 1 / (tau_12*(n_b+1))
gamma_13 = 1 / tau_13

gamma_23 = 1 / tau_23

N_o =N

N_mu = N

Omega_p = 35000.0

delta_o_small = -100e3

delta_mu_small = 1e6

delta_o_large = -6.5*sigma_o

delta_mu_large = 8*sigma_mu

iterator = [(delta_o_small, delta_mu_small, ’Small detuning’),

(delta_o_large, delta_mu_large, ’Large detuning’)]
for delta_o, delta_mu, regime in iterator:
print (f ’\n{regime} regime’)
result = cavity_steady_state(
gamma_12=gamma_12,
gamma_13=gamma_13,
gamma_23=gamma_23,
gamma_2d=gamma_2d,
gamma_3d=gamma_3d,
n_b=n_b,
gamma_oi=gamma_oi,
gamma_oc=gamma_oc,
gamma_mui=gamma_mui,
gamma_muc=gamma_muc ,
N_o=N_o,
N_mu=N_mu,
g-0=g_o,
g_mu=g_mu,
Omega_p=0Omega_p,
alpha_in=0.0,
beta_in=0.0,
delta_mu=delta_mu,
delta_o=delta_o,
delta_co0=0.0,
delta_cmu=0.0,
sigma_mu=sigma_mu,
sigma_o=sigma_o,
sSys=sys,
alpha_0=1,
beta_0=1
)
print (result)

C.3.2 Super-Atom Dynamics

This CUDA code implements the super-atom dynamical model. When compiled and ran, it performs
a simulation and saves the results as binary files in the working directory.

// compile: nvcc biphoton_super_atom.cu —o sim —03 —rdc=true —Ilm —arch=sm_60
#include <cuda.h>

#include <cuda_runtime.h>

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define PI 3.1415926535897932384626433832795
const double HBAR = 1.054571817e-34;
const double K_B = 1.380649e-23;

#define NUM_THREAD_BLOCKS 256

83

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79

#define NUM_THREADS_IN_BLOCK 512

enum SystemType

{
LAMBDA_SYSTEM,
V_SYSTEM
3
typedef enum SystemType SystemType;

struct DensityMatrix

{
double ri1;
double r22;
double r33;
double ri12;
double i12;
double ri13;
double i13;
double r23;
double i23;

};

typedef struct DensityMatrix DensityMatrix;

const DensityMatrix GROUND_STATE_MATRIX = {

1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
3
struct AtomSample
{
double weight;
double g_or;
double g_oi;
double g_mur;
double g_mui;
double delta_12;
double delta_23;
3
typedef struct AtomSample AtomSample;

struct SystemState

{
double alpha_r;
double alpha_ij;
double beta_r;
double beta_i;
DensityMatrix rhol[];
};
typedef struct SystemState SystemState;

size_t SizeofStateStruct(size_t nAtomSamples)

{

return sizeof(SystemState) + nAtomSamples * sizeof(DensityMatrix);
}
bool HostAllocateStateStruct (SystemState **ptr, size_t nAtomSamples)

{

*ptr = (SystemState *) malloc(SizeofStateStruct(nAtomSamples));
return (xptr != NULL);

}

bool DeviceAllocateStateStruct (SystemState **ptr, size_t nAtomSamples)

{
cudaError_t result = cudaMalloc(ptr, SizeofStateStruct(nAtomSamples));
return (result == cudaSuccess);

84

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119

120

121

122

123

124

125

void CopyStateStruct(SystemState *dst, const SystemState *src,
size_t nAtomSamples, cudaMemcpyKind kind)
{
cudaMemcpy (dst, src, SizeofStateStruct(nAtomSamples), kind);
}

bool HostAllocateAtomSamples (AtomSample **ptr, size_t nAtomSamples)
{

size_t size = nAtomSamples * sizeof(AtomSample);
*ptr = (AtomSample *) malloc(size);
return (xptr != NULL);

}

bool DeviceAllocateAtomSamples (AtomSample **ptr, size_t nAtomSamples)
{

size_t size = nAtomSamples * sizeof(AtomSample) ;
cudaError_t result = cudaMalloc(ptr, size);
return (result == cudaSuccess);

}

void CopyAtomSamples (AtomSample *dst, const AtomSample *src,
size_t nAtomSamples, cudaMemcpyKind kind)
{
cudaMemcpy (dst, src, nAtomSamples * sizeof(AtomSample), kind);
}

__device__

void MasterDerivative(DensityMatrix *diff, SystemType sys,
const DensityMatrix *rho, double Omega_mur, double Omega_mui,
double Omega_or, double Omega_oi, double Omega_pr, double Omega_pi,
double deltap_mu, double deltap_o, double n_b, double gamma_12,
double gamma_13, double gamma_23, double gamma_2d, double gamma_3d)

DensityMatrix tmp = *rho;

// code generated using computer algebra
if (sys == LAMBDA_SYSTEM)
{

diff->r11 = -2*0Omega_mui*tmp.rl2 - 2*x0Omega_mur*tmp.il2 - 2*x0Omega_pi*tmp.ril3
- 2x0Omega_pr*tmp.il3 - gamma_12*n_b*tmp.rll + gamma_12*tmp.r22*(n_b + 1) +
gamma_13*tmp.r33;

diff->r22 = 2*0Omega_mui*tmp.rl2 + 2*0Omega_mur*tmp.il2 - 2*0Omega_oi*tmp.r23 -
2*x0mega_or*tmp.i23 + gamma_12*n_b*tmp.rll - gamma_12*tmp.r22*x(n_b + 1) +
gamma_23*tmp.r33;

diff->r33 = 2*¥0Omega_oi*tmp.r23 + 2*0Omega_or*tmp.i23 + 2*0Omega_pi*tmp.rl3 +
2x0mega_pr*tmp.il3 - gamma_13*tmp.r33 - gamma_23*tmp.r33;

diff->r12 = Omega_mui*tmp.rll - Omega_mui*tmp.r22 - Omega_oi*tmp.ri13 -
Omega_or*tmp.il3 - Omega_pi*tmp.r23 - Omega_pr*tmp.i23 - deltap_mu*tmp.il2 -
1.0/2.0xgamma_12*n_b*tmp.r12 - 1.0/2.0*gamma_12%tmp.r12*(n_b + 1) -
1.0/2.0*gamma_2d*tmp.r12;

diff->i12 = Omega_mur*tmp.rll - Omega_mur*tmp.r22 - Omega_oi*tmp.il3 +
Omega_or*tmp.r13 + Omega_pi*tmp.i23 - Omega_pr*tmp.r23 + deltap_mu*tmp.rl2 -
1.0/2.0*xgamma_12%n_b*tmp.i1l2 - 1.0/2.0*gamma_12*tmp.i12*(n_b + 1) -
1.0/2.0*xgamma_2d*tmp.112;

diff->r13 = -Omega_mui*tmp.r23 + Omega_mur*tmp.i23 + Omega_oi*tmp.ril2 -
Omega_or*tmp.il2 + Omega_pi*tmp.rll - Omega_pi*tmp.r33 -
1.0/2.0*gamma_12%n_b*tmp.r13 - 1.0/2.0*gamma_13*tmp.r13 -
1.0/2.0*xgamma_23*tmp.r13 - 1.0/2.0*gamma_3d*tmp.r13 + tmp.il3*(-deltap_mu -
deltap_o);

diff->i13 = -Omega_mui*tmp.i23 - Omega_mur*tmp.r23 + Omega_oi*tmp.il2 +
Omega_or*tmp.rl12 + Omega_pr*tmp.rll - Omega_pr*tmp.r33 -
1.0/2.0*gamma_12*n_b*tmp.il3 - 1.0/2.0*gamma_13*tmp.i13 -
1.0/2.0*xgamma_23*tmp.i1l3 - 1.0/2.0*gamma_3d*tmp.il13 - tmp.ri13*(-deltap_mu -
deltap_o);

diff->r23 = Omega_mui*tmp.rl3 + Omega_mur*tmp.il3 + Omega_oi*tmp.r22 -
Omega_oi*tmp.r33 + Omega_pi*tmp.rl2 + Omega_pr*tmp.il2 + deltap_mu*tmp.i23 -

85

126

127
128
129
130

131

132

133

134

135

136

137

138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

1.0/2.0*xgamma_12*tmp.r23*(n_b + 1) - 1.0/2.0*gamma_13*tmp.r23 -
1.0/2.0*xgamma_23*tmp.r23 - 1.0/2.0*gamma_2d*tmp.r23 - 1.0/2.0*xgamma_3d*tmp.r23 +
tmp.i23*(-deltap_mu - deltap_o);

diff->i123 = Omega_mui*tmp.il3 - Omega_mur*tmp.rl3 + Omega_or*tmp.r22 -
Omega_or*tmp.r33 - Omega_pi*tmp.il2 + Omega_pr*tmp.rl2 - deltap_mu*tmp.r23 -
1.0/2.0*gamma_12*tmp.i23*(n_b + 1) - 1.0/2.0*gamma_13*tmp.i23 -
1.0/2.0*xgamma_23*tmp.i23 - 1.0/2.0*gamma_2d*tmp.i23 - 1.0/2.0*gamma_3d*tmp.i23 -
tmp.r23*(-deltap_mu - deltap_o);

}
else // sys == V.SYSTEM
{
diff->r11 = -2*0Omega_oi*tmp.rl2 - 2*0Omega_or*tmp.il2 - 2*0Omega_pi*tmp.ril3 -
2*0mega_pr*tmp.il3 + gamma_12*tmp.r22 + gamma_13*tmp.r33;
diff->r22 = -2*0Omega_mui*tmp.r23 - 2*0Omega_mur*tmp.i23 + 2*x0Omega_oi*tmp.rl2

+ 2*x0Omega_or*tmp.il2 - gamma_12*tmp.r22 - gamma_23*n_b*tmp.r22 +
gamma_23*tmp.r33*x(n_b + 1);

diff->r33 = 2*0Omega_mui*tmp.r23 + 2*0Omega_mur*tmp.i23 + 2*x0Omega_pi*tmp.ril3 +
2x0mega_pr*tmp.il3 - gamma_13*tmp.r33 + gamma_23*n_b*tmp.r22 -
gamma_23*tmp.r33*x(n_b + 1);

diff->r12 = -Omega_mui*tmp.r13 - Omega_mur*tmp.il3 + Omega_oi*tmp.rill -
Omega_oi*tmp.r22 - Omega_pi*tmp.r23 - Omega_pr*tmp.i23 - deltap_o*tmp.il2 -
1.0/2.0*xgamma_12*tmp.r12 - 1.0/2.0*gamma_23*n_b*tmp.rl12 -
1.0/2.0*xgamma_2d*tmp.r12;

diff->i12 = -Omega_mui*tmp.il3 + Omega_mur*tmp.rl3 + Omega_or*tmp.rill -
Omega_or*tmp.r22 + Omega_pi*tmp.i23 - Omega_pr*tmp.r23 + deltap_o*tmp.rl2 -
1.0/2.0*xgamma_12*tmp.i1l2 - 1.0/2.0*gamma_23*n_b*tmp.il2 -
1.0/2.0*xgamma_2d*tmp.112;

diff->r13 = Omega_mui*tmp.rl2 - Omega_mur*tmp.il2 - Omega_oi*tmp.r23 +
Omega_or*tmp.i23 + Omega_pi*tmp.rll - Omega_pi*tmp.r33 -
1.0/2.0*xgamma_13*tmp.r13 - 1.0/2.0*xgamma_23*tmp.r13*(n_b + 1) -
1.0/2.0*xgamma_3d*tmp.r13 + tmp.il3*x(-deltap_mu - deltap_o);

diff->i13 = Omega_mui*tmp.il2 + Omega_mur*tmp.rl2 - Omega_oi*tmp.i23 -
Omega_or*tmp.r23 + Omega_pr*tmp.rll - Omega_pr*tmp.r33 -
1.0/2.0xgamma_13*tmp.i13 - 1.0/2.0*gamma_23*tmp.1i13*(n_b + 1) -
1.0/2.0*gamma_3d*tmp.1i13 - tmp.r13*(-deltap_mu - deltap_o);

diff->r23 = Omega_mui*tmp.r22 - Omega_mui*tmp.r33 + Omega_oi*tmp.ril3 +
Omega_or*tmp.il3 + Omega_pi*tmp.rl2 + Omega_pr*tmp.il2 + deltap_o*tmp.i23 -
1.0/2.0*gamma_12*tmp.r23 - 1.0/2.0*xgamma_13*tmp.r23 -
1.0/2.0*xgamma_23*n_b*tmp.r23 - 1.0/2.0*gamma_23*tmp.r23*(n_b + 1) -
1.0/2.0*xgamma_2d*tmp.r23 - 1.0/2.0*gamma_3d*tmp.r23 + tmp.i23*(-deltap_mu -
deltap_o);

diff->i23 = Omega_mur*tmp.r22 - Omega_mur*tmp.r33 + Omega_oi*tmp.il3 -
Omega_or*tmp.r13 - Omega_pi*tmp.il2 + Omega_pr*tmp.rl2 - deltap_o*tmp.r23 -
1.0/2.0*gamma_12*tmp.i23 - 1.0/2.0*xgamma_13*tmp.1i23 -
1.0/2.0*xgamma_23%n_b*tmp.i23 - 1.0/2.0*gamma_23*tmp.i23*(n_b + 1) -
1.0/2.0*xgamma_2d*tmp.i23 - 1.0/2.0*gamma_3d*tmp.i23 - tmp.r23*(-deltap_mu -
deltap_o);
}

device

void Omega(double *0Omega_r, double *0Omega_i,

double g_r, double g_i,
double alpha_r, double alpha_i)

double abs_alpha_sqr alpha_rx*alpha_r + alpha_ix*alpha_i;

if (abs_alpha_sqr == 0.0)

{
*0Omega_r = g_r;
*0Omega_i = g_i;
return;

}

double alpha_rescale = sqrt(1.0 + 1.0/abs_alpha_sqr);
alpha_r *= alpha_rescale;

86

158 alpha_i *= alpha_rescale;

159

160 *0Omega_r = g_r*alpha_r - g_i*alpha_i;

161 *0Omega_i = g_r*alpha_i + g_ix*alpha_r;

162 |}

163

164 | __global__

165 | void EnsembleDerivativeAndSum(size_t nAtomSamples, SystemState *diff,
166 const SystemState *state, const AtomSample *atomSamples, SystemType sys,
167 double alpha_r, double alpha_i, double beta_r, double beta_i,
168 double Omega_pr, double Omega_pi, double delta_mu, double delta_o,
169 double n_b, double gamma_12, double gamma_13,

170 double gamma_23, double gamma_2d, double gamma_3d)

171 | {

172 size_t threadId = blockIdx.x*blockDim.x + threadIdx.x;

173 size_t threadCount = gridDim.x*blockDim.x;

174 for (size_t k = threadId; k < nAtomSamples; k += threadCount)
175 {

176 // get sample—specific wvariables

177 double g_or = atomSamples[k].g_or;

178 double g_oi = atomSamples[k].g_oi;

179 double g_mur = atomSamples[k].g_mur;

180 double g_mui = atomSamples[k].g_mui;

181 double delta_12 = atomSamples[k].delta_12;

182 double delta_23 = atomSamples[k].delta_23;

183 double w = atomSamples[k].weight;

184 const DensityMatrix *rho = &(state->rhol[k]);

185 DensityMatrix *rhoDiff = &(diff->rho[k]);

186

187 // contribution to ensemble terms

188 double rho_or = ((sys == V_SYSTEM) ? rho->ril2 rho->r23);
189 double rho_oi = ((sys == V_SYSTEM) ? -rho->i12 -rho->i23);
190 double rho_mur = ((sys == V_SYSTEM) ? rho->r23 rho->r12);
191 double rho_mui = ((sys == V_SYSTEM) 7?7 -rho->i23 -rho->i12);
192 double S_alpha_.r = w * (g_or*rho_or + g_oi*rho_oi);

193 double S_alpha_i = w * (g_oi*rho_or - g_or*rho_oi);

194 double S_beta_r = w * (g_mur*rho_mur + g_mui*rho_mui);

195 double S_beta_i = w * (g_mui*rho_mur - g_mur*rho_mui);

196 atomicAdd (&(diff->alpha_r), S_alpha_i);

197 atomicAdd (&(diff->alpha_i), -S_alpha_r);

198 atomicAdd (&(diff->beta_r), S_beta_i);

199 atomicAdd (&(diff->beta_i), -S_beta_r);

200

201 // drive Rabi frequencies

202 double Omega_mur;

203 double Omega_mui;

204 double Omega_or;

205 double Omega_oi;

206 Omega (&0mega_mur , &Omega_mui, g_mur, g_mui, beta_r, beta_i);
207 Omega (&0mega_or , &Omega_oi, g_or, g_oi, alpha_r, alpha_i);
208

209 // inhomogeneous shift

210 double deltap_mu = delta_mu + (sys == V_SYSTEM ? delta_23 delta_12);
211 double deltap_o = delta_o + (sys == V_SYSTEM ? delta_12 delta_23);
212

213 MasterDerivative (

214 rhoDiff ,

215 sys,

216 rho,

217 Omega_mur ,

218 Omega_mui ,

219 Omega_or,

220 Omega_oi,

221 Omega_pr,

222 Omega_pi,

223 deltap_mu,

87

224 deltap_o,

225 n_b,

226 gamma_12,

227 gamma_13,

228 gamma_23,

229 gamma_2d,

230 gamma_3d) ;

231 }

232 |}

233

234 | void SystemDerivative(size_t nAtomSamples,

235 SystemState *diff, const SystemState *state,
236 const AtomSample *atomSamples, SystemType sys,
237 double Omega_pr, double Omega_pi, double delta_mu, double delta_o,
238 double n_b, double gamma_12, double gamma_13, double gamma_23,
239 double gamma_2d, double gamma_3d, double gamma_o, double gamma_mu)
240 | {

241 double alpha_r;

242 double alpha_ij;

243 double beta_r;

244 double beta_i;

245 cudaMemcpy (&alpha_r, &(state->alpha_r),

246 sizeof (double), cudaMemcpyDeviceToHost) ;
247 cudaMemcpy (&alpha_i, &(state->alpha_i),

248 sizeof (double), cudaMemcpyDeviceToHost) ;
249 cudaMemcpy (&beta_r, &(state->beta_r),

250 sizeof (double), cudaMemcpyDeviceToHost) ;
251 cudaMemcpy (&beta_i, &(state->beta_i),

252 sizeof (double), cudaMemcpyDeviceToHost) ;
253

254 double d_alpha_r = -alpha_r * gamma_o/2.0;
255 double d_alpha_i = -alpha_i * gamma_o0/2.0;
256 double d_beta_r = -beta_r * gamma_mu/2.0;
257 double d_beta_i = -beta_i * gamma_mu/2.0;
258 cudaMemcpy (&(diff ->alpha_r), &d_alpha_r,

259 sizeof (double), cudaMemcpyHostToDevice) ;
260 cudaMemcpy (&(diff->alpha_i), &d_alpha_i,

261 sizeof (double), cudaMemcpyHostToDevice) ;
262 cudaMemcpy (&(diff->beta_r), &d_beta_r,

263 sizeof (double), cudaMemcpyHostToDevice) ;
264 cudaMemcpy (&(diff->beta_i), &d_beta_i,

265 sizeof (double), cudaMemcpyHostToDevice) ;
266

267 EnsembleDerivativeAndSum <<<NUM_THREAD_BLOCKS ,NUM_THREADS_IN_BLOCK>>>(
268 nAtomSamples,

269 diff,

270 state,

271 atomSamples,

272 sys,

273 alpha_r,

274 alpha_i,

275 beta_r,

276 beta_i,

277 Omega_pr,

278 Omega_pi,

279 delta_mu,

280 delta_o,

281 n_b,

282 gamma_12,

283 gamma_13,

284 gamma_23,

285 gamma_2d,

286 gamma_3d) ;

287 cudaDeviceSynchronize () ;

288 |

289

88

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

__global__

void GlobalDensityMatricesWeightedSum(size_t nAtomSamples,
DensityMatrix *dst, const DemnsityMatrix *a, double aw,
const DensityMatrix *b, double bw)

{
size_t threadId = blockIdx.x*blockDim.x + threadlIdx.x;
size_t threadCount = gridDim.x*blockDim.x;
for (size_t k = threadId; k < nAtomSamples; k += threadCount)
{
dst[k].r11 = awxal[k].r11 + bwx*b[k].ri1il;
dst[k].r22 = awxal[k].r22 + bw*b[k].r22;
dst[k].r33 = aw*al[k].r33 + bwxb[k].r33;
dst[k].r12 = awxal[k].r12 + bwx*bl[k].r12;
dst[k].i12 = awxal[k].il12 + bw*b[k].i12;
dst[k].r13 = aw*al[k].r13 + bwxb[k].ri13;
dst[k].i13 = awxal[k].il13 + bwx*b[k].i13;
dst[k].r23 = aw*al[k].r23 + bwxb[k].r23;
dst[k].i23 = aw*al[k].i23 + bwx*b[k].i23;
}
}
__global__

void GlobalCavityStateWeightedSum(size_t nAtomSamples,
SystemState *dst, const SystemState *a, double aw,
const SystemState *b, double bw)

{
dst->alpha_r = aw*a->alpha_r + bw*b->alpha_r;
dst->alpha_i = aw*a->alpha_i + bw*b->alpha_i;
dst->beta_r = aw*a->beta_r + bwxb->beta_r;
dst->beta_i = aw*a->beta_i + bwxb->beta_ij;

}

void SystemStateWeightedSum(size_t nAtomSamples, SystemState x*dst,
const SystemState *a, double aw, const SystemState *b, double bw)
{
GlobalCavityStateWeightedSum<<<1,1>>>(nAtomSamples, dst, a, aw, b, bw);
cudaDeviceSynchronize () ;
GlobalDensityMatricesWeightedSum <<<NUM_THREAD_BLOCKS,
NUM_THREADS_IN_BLOCK>>>(nAtomSamples,
dst->rho, a->rho, aw, b->rho, bw);
cudaDeviceSynchronize () ;

}

void SystemRK4Step(size_t nAtomSamples, SystemState *__restrict__ state,
const AtomSample *__restrict__ atomSamples,
SystemState *__restrict__ tmpl, SystemState *__restrict__ tmp2,
SystemType sys, double dt, double Omega_pr, double Omega_pi,
double delta_mu, double delta_o, double n_b, double gamma_12,
double gamma_13, double gamma_23, double gamma_2d,
double gamma_3d, double gamma_o, double gamma_mu)

SystemDerivative(// ki
nAtomSamples,
tmpl,
state,
atomSamples,
sys,
Omega_pr,
Omega_pi,
delta_mu,
delta_o,

n_b,

gamma_12,
gamma_13,
gamma_23,
gamma_2d,

89

356 gamma_3d,

357 gamma_o ,

358 gamma_mu) ;

359 SystemStateWeightedSum (nAtomSamples, tmp2, state, 1.0, tmpl, dt/6.0);
360 SystemStateWeightedSum(nAtomSamples, tmpl, state, 1.0, tmpl, dt/2.0);
361 SystemDerivative(// k2

362 nAtomSamples,

363 tmpl,

364 tmpl,

365 atomSamples ,

366 sys,

367 Omega_pr,

368 Omega_pi,

369 delta_mu,

370 delta_o,

371 n_b,

372 gamma_12,

373 gamma_13,

374 gamma_23,

375 gamma_2d ,

376 gamma_3d,

377 gamma_o ,

378 gamma_mu) ;

379 SystemStateWeightedSum (nAtomSamples, tmp2, tmpl, dt/3.0, tmp2, 1.0);
380 SystemStateWeightedSum (nAtomSamples, tmpl, state, 1.0, tmpl, dt/2.0);
381 SystemDerivative(// k3

382 nAtomSamples,

383 tmpl,

384 tmpl,

385 atomSamples,

386 sys,

387 Omega_pr,

388 Omega_pi,

389 delta_mu,

390 delta_o,

391 n_b,

392 gamma_12,

393 gamma_13,

394 gamma_23,

395 gamma_2d ,

396 gamma_3d ,

397 gamma_o ,

398 gamma_mu) ;

399 SystemStateWeightedSum (nAtomSamples, tmp2, tmpl, dt/3.0, tmp2, 1.0);
400 SystemStateWeightedSum (nAtomSamples, tmpl, state, 1.0, tmpl, dt);
401 SystemDerivative(// k4

402 nAtomSamples,

403 tmpl,

404 tmpl,

405 atomSamples,

406 sys,

407 Omega_pr,

408 Omega_pi,

409 delta_mu,

410 delta_o,

411 n_b,

412 gamma_12,

413 gamma_13,

414 gamma_23,

415 gamma_2d,

416 gamma_3d ,

417 gamma_o ,

418 gamma_mu) ;

419 SystemStateWeightedSum(nAtomSamples, state, tmpl, dt/6.0, tmp2, 1.0);
420 |}

421

90

422 |double PlanckExcitation(double T, double omega)

423 |{

424 return 1.0 / expml (HBAR*omega / (K_B*T));

425 |}

426

427 | double RandomUniform(void)

428 | {

429 return ((double) rand()) / ((double) RAND_MAX);
430 |}

431

432 | double RandomGaussian(void)

433 | {

434 double U1l = RandomUniform();

435 double U2 = RandomUniform();

436

437 // Ul == 0.0 results in an error when taking its log
438 while (U1 == 0.0)

439 {

440 Ul = RandomUniform();

441 }

442

443 double R = sqrt(-2.0 * log(U1l));

444 double Theta = 2.0%PI * U2;

445 return R * cos(Theta);

446 |}

447

448 | int main(void)

449 | {

450 // system constants

451 const SystemType sys = LAMBDA_SYSTEM;

452 const double omega_12 = 2.0%PI*5.186¢e9;

453 const double di13 = 1.63e-32;

454 const double d23 = 1.15e-32;

455 const double tau_12 = 11.0;

456 const double tau_3 = 0.011;

457 const double gamma_2d = 1e6;

458 const double gamma_3d = 1e6;

459 const double sigma_o = 2.0*%PI*419e6;

460 const double sigma_mu = 2.0%PIx*5e6;

461 const double N = 1e16;

462 const double gamma_oi = 2.0%PI*7.95e6;

463 const double gamma_oc = 2.0%PI*1.7e6;

464 const double gamma_mui = 2.0*%PI*650e3;

465 const double gamma_muc = 2.0*PI*1.5e6;

466 const double g_or = 51.9;

467 const double g_oi = 0.0;

468 const double g_mur = 1.04;

469 const double g_mui = 0.0;

470

471 const double T = 4.6;

472 const double n_b = PlanckExcitation(T, omega_12);
473 const double tau_13 = tau_3 * d13%*d13 / (d13*d13 + d23*d23);
474 const double tau_23 = tau_3 * d23*d23 / (d13xd13 + d23%*d23);
475 const double gamma_12 = 1.0 / (tau_12*(n_b+1.0));
476 const double gamma_13 = 1.0 / tau_13;

477 const double gamma_23 = 1.0 / tau_23;

478

479 const double sigma_12 = ((sys == V_SYSTEM) ? sigma_o : sigma_mu);
480 const double sigma_23 = ((sys == V_SYSTEM) ? sigma_mu : sigma_o);
481

482 // parameters

483 size_t nAtomSamples = 1’000°000;

484 const double weight = N / ((double) nAtomSamples);
485 const double delta_mu = 2.0*sigma_mu;

486 const double delta_o = 2.0*sigma_o;

487 const double Omega_pr = 35000.0;

91

488 const double Omega_pi = 0.0;

489 const double alpha_Or = 1.0;

490 const double alpha_0i = 0.0;

491 const double beta_Or = 1.0;

492 const double beta_0i = 0.0;

493

494 // allocate arrays

495 AtomSample *atomSamples;

496 if (!(HostAllocateAtomSamples (&atomSamples, nAtomSamples)))
497 {

498 printf ("Host memory allocation failure\n");
499 return -1;

500 }

501

502 AtomSample *deviceAtomSamples;

503 if (!(DeviceAllocateAtomSamples (&deviceAtomSamples, nAtomSamples)))
504 {

505 free(atomSamples) ;

506 printf ("Device memory allocation failure\n");
507 return -1;

508 }

509

510 SystemState *state;

511 if (!(HostAllocateStateStruct (&state, nAtomSamples)))
512 {

513 free(atomSamples);

514 cudaFree (deviceAtomSamples) ;

515 printf ("Host memory allocation failure\n");
516 return -1;

517 }

518

519 SystemState *deviceState;

520 if (!(DeviceAllocateStateStruct (&deviceState, nAtomSamples)))
521 {

522 free (atomSamples) ;

523 cudaFree (deviceAtomSamples) ;

524 free(state);

525 printf ("Device memory allocation failure\n");
526 return -1;

527 }

528

529 SystemState *tmpl;

530 if (!(DeviceAllocateStateStruct (&tmpl, nAtomSamples)))
531 {

532 free(atomSamples) ;

533 cudaFree (deviceAtomSamples) ;

534 free(state) ;

535 cudaFree (deviceState) ;

536 printf ("Device memory allocation failure\n");
537 return -1;

538 }

539

540 SystemState *tmp2;

541 if (!(DeviceAllocateStateStruct (&tmp2, nAtomSamples)))
542 {

543 free (atomSamples) ;

544 cudaFree (deviceAtomSamples) ;

545 free(state);

546 cudaFree (deviceState) ;

547 cudaFree (tmpl) ;

548 printf ("Device memory allocation failure\n");
549 return -1;

550 }

551

552 // populate arrays and copy to device memory

553 state->alpha_r = alpha_Or;

92

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

state->alpha_i = alpha_0i;
state->beta_r = beta_Or;
state->beta_i = beta_0i;

for (size_t k 0; k < nAtomSamples; k++)

{
atomSamples [k].g_or = g_or;
atomSamples [k].g_oi = g_oi;
atomSamples [k].g_mur = g_mur;
atomSamples [k].g_mui = g_mui;
atomSamples [k].weight = weight;
atomSamples [k].delta_12 = sigma_12 * RandomGaussian() ;
atomSamples [k].delta_23 = sigma_23 * RandomGaussian();
state->rho[k] = GROUND_STATE_MATRIX;
}

CopyAtomSamples (deviceAtomSamples, atomSamples, nAtomSamples,
cudaMemcpyHostToDevice) ;
CopyStateStruct (deviceState, state, nAtomSamples, cudaMemcpyHostToDevice);

// run simulation and save results to binary files

const char *dirname = ".";

char atomSamplesFpath [256];

sprintf (atomSamplesFpath, "Vs/atom_samples", dirname) ;

FILE *xatomSamplesFp = fopen(atomSamplesFpath, "wb");

fwrite (atomSamples, sizeof(AtomSample), nAtomSamples, atomSamplesFp);
printf ("Saved atom sample data as %s\n", atomSamplesFpath);
fclose(atomSamplesFp) ;

const double dt = 10e-12;
size_t numSteps = O0;

size_t numPrint
while (true)

{

0;

size_t toPrint;
if (numPrint < 100)

{
toPrint = numPrint;
}
else
{
size_t n = (numPrint-100) / 900;
toPrint = (numPrint-100) % 900 + 100;
for (size_t i = 0; i < n; i++)
{
toPrint *= 10;
}
}

while (numSteps < toPrint)
{

SystemRK4Step (
nAtomSamples,
deviceState,
deviceAtomSamples,
tmpl,
tmp2,
sys,
dt,

Omega_pr,
Omega_pi,
delta_mu,
delta_o,
n_b,

93

620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

}

gamma_12,
gamma_13,
gamma_23,
gamma_2d,
gamma_3d ,

gamma_oi+gamma_oc,

gamma_mui+gamma_muc) ;

numSteps++;

char fname [256];
"state_step_%zd_dt_%zd_ps",

sprintf (fname,
numSteps,

char fpath[256];
"%S/%S" s

sprintf (fpath,

FILE *fp = fopen(fpath,

CopyStateStruct (state,

nAtomSamples,

fwrite(state,
fclose(£fp);

printf ("\nSaved step %zd as %s\n",
printf ("alpha_r %f\n",
printf ("alpha_i %f\n",
hE\n",
hf\n",

printf ("beta_r
printf ("beta_i

printf ("rho [0].
printf ("rho [0].
printf ("rho [0].
printf ("rho [0].
printf ("rho [0].
printf ("rho [0].
printf ("rho [0].
printf ("rho [0].
printf ("rho [0].

numPrint ++;

free(atomSamples) ;
cudaFree(deviceAtomSamples) ;
free(state);
cudaFree (deviceState);
cudaFree (tmpl) ;
cudaFree (tmp2) ;
return 0;

rii
r22
r33
ri2
i12
ri3
i13
r23
i23

%E\n"
%E\n"
%f \nu
%E\n"
%E\n"
%E\n"
%E\n"
%E\n"
%E\n"

dirname,

(size_t) round(dtx*1el2));

"Wb");
deviceState,
cudaMemcpyDeviceToHost) ;
SizeofStateStruct (nAtomSamples), 1,

state->rho [0]
state->rho [0]
state->rho [0]
state->rho [0]

state->rho [0].
.r13);

state->rho [0]

state->rho [0].
.r23);

state->rho [0]

state->rho [0].

fname) ;

numSteps,
state->alpha_r);
state->alpha_i);

state->beta_r);

state->beta_1i);

fp);

fpath);

.r11);
.r22);
.r33);
.r12);

i12);
i13);

i23);

94

	Introduction
	Quantum Networking
	Correlating Microwave and Optical Photons
	Wave Mixing Processes
	Hybrid Microwave-Optical Quantum Systems
	Hybrid Atomic Systems
	Rare Earths

	Background Quantum Theory
	Second Quantisation
	Light-Matter Interactions
	The Heisenberg Picture
	Density Matrices and the Master Equation

	Outline of Thesis

	Prior Work on Transduction Modelling
	Quantum Model
	Adiabatic Elimination of the Atomic Dynamics
	Semiclassical Cavity and Atomic Master Equation Steady States
	Steady States
	Further Development by Barnett and Longdell (2020)

	Comparisons of Models
	Transduction Signal Phase Relations

	Transduction in a Four-Level System in Yb:YVO4
	Target Platform and Benchmark Experimental Data
	Driven Atom Hamiltonian
	Atomic Output
	Ensemble Output
	Numerical Methods
	Grid Aliasing
	Feature Finding
	Neighbourhood Integration

	Experimental Parameters for Model
	Inhomogeneous Broadening
	Spin Hamiltonian
	Transition Frequencies
	Dephasing Rates
	Dipole Moments
	Optical Pump Calibration

	Results
	Accounting for Constraint Breaking

	Biphoton Generation in 3-Level Systems
	Dynamical Model
	Vacuum Rabi Frequency

	Steady States
	Super-Atom Dynamics
	Numerical Methods

	Results
	Super-Atom Simulations
	Steady States

	Implicit Euler Method

	Conclusion
	Replicating and Reverse-Engineering Rabi Frequencies for Barnett and Longdell 2020
	Waveguide Transducer Efficiency Fit
	Code Listings
	Three-Level Transduction Replication
	Single Cavity
	Double Cavity

	Four-Level Transduction
	Biphoton Generation
	Steady State
	Super-Atom Dynamics

